• Title/Summary/Keyword: Optimized design

Search Result 4,182, Processing Time 0.036 seconds

Design of Optimized Ultrasound Clinical Work-Flow; Usability Perspective

  • Bag, ByungEun;Yoo, SunKook;Jang, WonSeuk
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.40-42
    • /
    • 2015
  • Purpose Usability is an important factor in our life. This paper presents an approach to design the clinical work-flow for ultrasound system. And, we tried to apply this work-flow in diagnosis ultrasound system. Materials and Methods For user learnability, we follow international standard IEC 60601-1-1 and IEC 62366 which describes usability of medical instrument. User requirement are applied by 10 clinicians who are well aware of usability. We considered user environment and designed clinical work-flow into two types: general use and emergency use. The designed clinical work-flow was evaluated by 10 clinicians and results derived from the evaluation were analyzed. Results We could successfully design optimized clinical workflow of ultrasound system. Conclusion This paper suggests usability testing for optimized ultrasound clinical workflow. Using this clinical work flow, users can enhance their clinical performance and reduce operation time.

Design of Low Frequency Flat Speaker by Piezofilm (Piezofilm 을 이용한 저주파 평면 스피커의 설계)

  • Hwang, Joon-Seok;Lee, Sung;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this study, experimental verification of performance of flat speaker has been conducted. The piezofilm (PVDF) actuator has been designed to prevent the distortion of sound and make the frequency response of radiated sound flat. The electrode pattern of piezofilm actuator is optimized to satisfy the design objective. The formulation of design method is based on the coupled finite element and boundary element method and electrode pattern is optimized by genetic algorithm. The flat speaker with optimized piezofilm actuator has been manufactured. The sound pressure level at the distance of 50cm is measured using microphone and compared with the result of numerical simulation.

  • PDF

An Optimized Hybrid Radix MAC Design (최적화된 4진/8진 혼합 MAC 설계)

  • 정진우;김승철;이용주;이용석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.125-128
    • /
    • 2002
  • This paper is about a high-speed MAC (multiplier and accumulator) design applying radix-4 and radix-8 Booth's algorithm at the same time. The optimized hybrid radix design for high speed MAC has taken advantage of both a radix-4 and a radix-8 architectures. A radix-4 architecture meets high-speed, but it takes much more power and chip area than a radix-8 architecture. A radix-8 architecture needs less power and chip area than the other, but it has a bottleneck of generating three times the multiplicand problem. An optimized hybrid architecture performs tile radix-4 multiplication partially in parallel with the generation of three times the multiplicand for use of tile radix-8 multiplication. It reduces the concerned bit width of multiplier in radix-8 multiplication.

  • PDF

An Implementation of an Initial Design System for an Excavator Front Group with an Intelligent CAD Module (지능형 CAD 모듈을 이용한 굴삭기 프론트 초기 설계 시스템 구축)

  • Ju, Su-Suk;Bae, Il-Ju;Lee, Soo-Hong
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.405-412
    • /
    • 2007
  • It's difficult for manufacturers to derive a new design from the demands of consumers as quickly as possible and a designer carries out design operation using insufficient resources in initial design. To carry out initial design process efficiently for an excavator front group, it is necessary for a designer to manage lots of parameter with an existing knowledge or with in-house know-how and develop function module that calculates working range and excavator force. By doing so, it will bring up the optimized values of parameters based on the DOE in the early design stage. In this paper, a new approach to improve the process with optimized parameters is proposed to reduce a product development time of the excavator front design.

Assessment on the Energy Efficiency Performance by the Fore-body Retrofit of the Coastline (연안선박의 선수부 개조에 의한 에너지 효율 성능 분석)

  • Park, Dong-Woo;Kim, Kyung Sung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.965-971
    • /
    • 2017
  • The primary objective of this study was to assess the energy efficiency performance of an optimized hull form capable of saving energy based on existing vessels. The bow shape of existing vessels was investigated, giving consideration to design draft and speed. Resistance performances were also assessed for existing vessels according to operating conditions. Commercial CFD codes and model test materials were used to assess effective power. An optimized hull form with minimum resistance was selected given real operating conditions. The effective horsepower of existing and optimized vessels was estimated at three speeds. Resistance performance for an optimized vessel showed a 6 % improvement in effective horsepower at design speed (12 knots) compared to existing vessels. Quasi-propulsive efficiency employed experimental data, while energy efficiency performance was analyzed based on operating days, bunker fuel oil C cost, daily fuel oil consumption and specific fuel oil consumption. Energy efficiency performance for an optimized vessel showed a gain of 30 million won per year in reduced costs at design speed (12 knots) compared to existing vessels.

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Reduction of Rattle Noise in a Direct-Engine PTO Driveline Using an Anti-backlash Gear (안티-백래시 기어를 이용한 엔진 직결식 PTO 전동 라인의 치타음 감소)

  • Shim, Sung-Bo;Park, Young-Jun;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.32 no.3
    • /
    • pp.137-144
    • /
    • 2007
  • An anti-backlash gear was developed to reduce the rattle noise generated from the gearbox of a direct-engine PTO driveline of agricultural tractors under idling. A pair of gears using the anti-backlash gear as driven part was modeled and verified. Using the verified model, a computer simulation was conducted to investigate the effects of design parameters of the anti-backlash gear on the reduction of rattle noise. The optimum values of the design parameters were also determined by the computer simulation. The optimized anti-backlash gear was then manufactured and installed on the experimental PTO driveline for the performance test. Measurement of rattle noise was made to evaluate its performance before and after the driven gear of the PTO gearbox was replaced by the optimized anti-backlash gear. Results of the study were as follows: The optimum values of the design parameters, spring constant and deformation, may be determined by a relationship: $$k{\ge}\frac{4364.7}{150{\delta}-23.564}$$ The optimized anti-backlash gear reduced the rattle noise maximally by 16.9 dBA. This concluded that it would be most effective to use the optimized anti-backlash gear to eliminate the rattle noise in the PTO driveline.

Optimal design of Self-Organizing Fuzzy Polynomial Neural Networks with evolutionarily optimized FPN (진화론적으로 최적화된 FPN에 의한 자기구성 퍼지 다항식 뉴럴 네트워크의 최적 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.12-14
    • /
    • 2005
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) by means of genetically optimized fuzzy polynomial neuron(FPN) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms(GAs). The conventional SOFPNNs hinges on an extended Group Method of Data Handling(GMDH) and exploits a fixed fuzzy inference type in each FPN of the SOFPNN as well as considers a fixed number of input nodes located in each layer. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, a collection of the specific subset of input variables, and the number of membership function) and addresses specific aspects of parametric optimization. Therefore, the proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series).

  • PDF

An improved plasma model by optimizing neuron activation gradient (뉴런 활성화 경사 최적화를 이용한 개선된 플라즈마 모델)

  • 김병환;박성진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.20-20
    • /
    • 2000
  • Back-propagation neural network (BPNN) is the most prevalently used paradigm in modeling semiconductor manufacturing processes, which as a neuron activation function typically employs a bipolar or unipolar sigmoid function in either hidden and output layers. In this study, applicability of another linear function as a neuron activation function is investigated. The linear function was operated in combination with other sigmoid functions. Comparison revealed that a particular combination, the bipolar sigmoid function in hidden layer and the linear function in output layer, is found to be the best combination that yields the highest prediction accuracy. For BPNN with this combination, predictive performance once again optimized by incrementally adjusting the gradients respective to each function. A total of 121 combinations of gradients were examined and out of them one optimal set was determined. Predictive performance of the corresponding model were compared to non-optimized, revealing that optimized models are more accurate over non-optimized counterparts by an improvement of more than 30%. This demonstrates that the proposed gradient-optimized teaming for BPNN with a linear function in output layer is an effective means to construct plasma models. The plasma modeled is a hemispherical inductively coupled plasma, which was characterized by a 24 full factorial design. To validate models, another eight experiments were conducted. process variables that were varied in the design include source polver, pressure, position of chuck holder and chroline flow rate. Plasma attributes measured using Langmuir probe are electron density, electron temperature, and plasma potential.

  • PDF