• Title/Summary/Keyword: Optimization-Based Clustering

Search Result 178, Processing Time 0.025 seconds

A Study on Fuzzy Set-based Polynomial Neural Networks Based on Evolutionary Data Granulation (Evolutionary Data Granulation 기반으로한 퍼지 집합 다항식 뉴럴 네트워크에 관한 연구)

  • 노석범;안태천;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.433-436
    • /
    • 2004
  • In this paper, we introduce a new Fuzzy Polynomial Neural Networks (FPNNS)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNS based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNS-like structure named Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. The proposed design procedure for networks architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IC) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using the time series dataset of gas furnace process.

  • PDF

A Study for Solving Multi-Depot Dial-a-Ride Problem Considering Soft Time Window (다수차고지와 예약시간 위반을 고려한 교통약자 차량 서비스에 대한 연구)

  • Kim, Taehyeong;Park, Bum-Jin;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.70-77
    • /
    • 2012
  • Dial-a-ride is the most widely available transit service for disabled persons or seniors in the United States and Europe. This paper studies a static dial-a-ride problem considering multiple depots, heterogeneous vehicles, and soft time windows. In this paper, we apply a heuristic based on clustering first-routing second(HCR) to a real-world large dial-a-ride problem from Maryland Transit Administration(MTA). MTA's real operation is compared with the results of developed heuristic for 24 cases. The objective function of the proposed model is to minimize the total cost composed of the service provider's cost and the customers' inconvenience cost. For the comparison, the objective function values of HCR do not include waiting cost, delay cost, and excess ride cost. The objective function values from HCR are better than those from MTA's operation for all cases. This result shows that our heuristic method can make the real operation better and more efficient.

Design and Analysis of TSK Fuzzy Inference System using Clustering Method (클러스터링 방법을 이용한 TSK 퍼지추론 시스템의 설계 및 해석)

  • Oh, Sung-Kwun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.3
    • /
    • pp.132-136
    • /
    • 2014
  • We introduce a new architecture of TSK-based fuzzy inference system. The proposed model used fuzzy c-means clustering method(FCM) for efficient disposal of data. The premise part of fuzzy rules don't assume any membership function such as triangular, gaussian, ellipsoidal because we construct the premise part of fuzzy rules using FCM. As a result, we can reduce to architecture of model. In this paper, we are able to use four types of polynomials as consequence part of fuzzy rules such as simplified, linear, quadratic, modified quadratic. Weighed Least Square Estimator are used to estimates the coefficients of polynomial. The proposed model is evaluated with the use of Boston housing data called Machine Learning dataset.

A Method for Dynamic Clustering-based Efficient Management in Large-Scale IoT Environment (대규모 IoT 컴퓨팅 환경에서 동적 클러스터링 기반 효율적 관리 기법)

  • Kim, Dae Young;La, Hyun Jung
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.85-97
    • /
    • 2014
  • IoT devices that collect information for end users and provide various services like giving traffic or weather information to them that are located everywhere aim to raise quality of life. Currently, the number of devices has dramatically increased so that there are many companies and laboratories for developing various IoT devices in the world. However, research about IoT computing such as connecting IoT devices or management is at an early stage. A server node that manages lots of IoT device in IoT computing environment is certainly needed. But, it is difficult to manage lots of devices efficiently. However, anyone cannot surly know about how many servers are needed or where they are located in the environment. In this paper, we suggest a method that is a way to dynamic clustering IoT computing environment by logical distance among devices. With our proposed method, we can ensure to manage the quality in large-scale IoT environment efficiently.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Design of Black Plastics Classifier Using Data Information (데이터 정보를 이용한 흑색 플라스틱 분류기 설계)

  • Park, Sang-Beom;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.4
    • /
    • pp.569-577
    • /
    • 2018
  • In this paper, with the aid of information which is included within data, preprocessing algorithm-based black plastic classifier is designed. The slope and area of spectrum obtained by using laser induced breakdown spectroscopy(LIBS) are analyzed for each material and its ensuing information is applied as the input data of the proposed classifier. The slope is represented by the rate of change of wavelength and intensity. Also, the area is calculated by the wavelength of the spectrum peak where the material property of chemical elements such as carbon and hydrogen appears. Using informations such as slope and area, input data of the proposed classifier is constructed. In the preprocessing part of the classifier, Principal Component Analysis(PCA) and fuzzy transform are used for dimensional reduction from high dimensional input variables to low dimensional input variables. Characteristic analysis of the materials as well as the processing speed of the classifier is improved. In the condition part, FCM clustering is applied and linear function is used as connection weight in the conclusion part. By means of Particle Swarm Optimization(PSO), parameters such as the number of clusters, fuzzification coefficient and the number of input variables are optimized. To demonstrate the superiority of classification performance, classification rate is compared by using WEKA 3.8 data mining software which contains various classifiers such as Naivebayes, SVM and Multilayer perceptron.

A Study on the Optimization of State Tying Acoustic Models using Mixture Gaussian Clustering (혼합 가우시안 군집화를 이용한 상태공유 음향모델 최적화)

  • Ann, Tae-Ock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.167-176
    • /
    • 2005
  • This paper describes how the state tying model based on the decision tree which is one of Acoustic models used for speech recognition optimizes the model by reducing the number of mixture Gaussians of the output probability distribution. The state tying modeling uses a finite set of questions which is possible to include the phonological knowledge and the likelihood based decision criteria. And the recognition rate can be improved by increasing the number of mixture Gaussians of the output probability distribution. In this paper, we'll reduce the number of mixture Gaussians at the highest point of recognition rate by clustering the Gaussians. Bhattacharyya and Euclidean method will be used for the distance measure needed when clustering. And after calculating the mean and variance between the pair of lowest distance, the new Gaussians are created. The parameters for the new Gaussians are derived from the parameters of the Gaussians from which it is born. Experiments have been performed using the STOCKNAME (1,680) databases. And the test results show that the proposed method using Bhattacharyya distance measure maintains their recognition rate at $97.2\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. And the method using Euclidean distance measure shows that it maintains the recognition rate at $96.9\%$ and reduces the ratio of the number of mixture Gaussians by $1.0\%$. Then the methods can optimize the state tying model.

Mobile App Analytics using Media Repertoire Approach (미디어 레퍼토리를 이용한 스마트폰 애플리케이션 이용 패턴 유형 분석)

  • Kwon, Sung Eun;Jang, Shu In;Hwangbo, Hyunwoo
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.133-154
    • /
    • 2021
  • Today smart phone is the most common media with a vehicle called 'application'. In order to understand how media users select applications and build their repertoire, this study conducted two-step approach using big data from smart phone log for 4 weeks in November 2019, and finally classified 8 media repertoire groups. Each of the eight media repertoire groups showed differences in time spent of mobile application category compared to other groups, and also showed differences between groups in demographic distribution. In addition to the academic contribution of identifying the mobile application repertoire with large scale behavioral data, this study also has significance in proposing a two-step approach that overcomes 'outlier issue' in behavioral data by extracting prototype vectors using SOM (Sefl-Organized Map) and applying it to k-means clustering for optimization of the classification. The study is also meaningful in that it categorizes customers using e-commerce services, identifies customer structure based on behavioral data, and provides practical guides to e-commerce communities that execute appropriate services or marketing decisions for each customer group.

A Study for Improvement Effect of Paralleled Genetic Algorithm by Using Clustering Computer System (클러스터링 컴퓨터 시스템을 이용한 병렬화 유전자 알고리즘의 효율성 증대에 대한 연구)

  • 이원창;성활경;백영종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.430-438
    • /
    • 2004
  • Among the optimization method, GA (genetic algorithm) is a very powerful searching method enough to compete with design sensitivity analysis method. GA is very easy to apply, since it dose not require any design sensitivity information. However, GA has been computationally not efficient due to huge repetitive computation. In this study, parallel computation is adopted to Improve computational efficiency, Paralleled GA is introduced on a clustered LINUX based personal computer system.

  • PDF

A Study for Improvement Effect of Paralleled Genetic Algorithm by Using Clustering Computer System (클러스터링 컴퓨터 시스템을 이용한 병렬화 유전자 알고리듬의 효율성 증대에 대한 연구)

  • 이원창;주지한;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.189-196
    • /
    • 2003
  • Among the optimization method, GA (genetic algorithm) is a very powerful searching method enough to compete with design sensitivity analysis method. GA is very easy to apply, since it dose not require any design sensitivity information. However, GA has been computationally not efficient due to huge repetitive computation. In this study, parallel computation is adopted to improve computational efficiency. Paralleled GA is introduced on a clustered LINUX based personal computer system.