• Title/Summary/Keyword: Optimization problems

Search Result 2,437, Processing Time 0.037 seconds

An Approsimate Solution of Travelling Salesman Problem Using a Smoothing Method

  • ARAKI, Tomoyuki;YAMAMOTO, Fujio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.75-79
    • /
    • 1998
  • It is well known that traveling salesman problem (for short, TSP) is one of mot important problems for optimization, and almost all optimization problems result in TSP. This paper describes on an effective solution of TSP using genetic algorithm. The features of our method are summarized as follows : (1) By using division and unification method, a large problem is replaced with some small ones. (2) Smoothing method proposed in this paper enables us to obtain a fine approximate solution globally. Accordingly, demerits caused by division and unification method are decreased. (3) Parallel operation is available because all divided problems are independent of each other.

  • PDF

An Artificial Neural Network for the Optimal Path Planning (최적경로탐색문제를 위한 인공신경회로망)

  • Kim, Wook;Park, Young-Moon
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.333-336
    • /
    • 1991
  • In this paper, Hopfield & Tank model-like artificial neural network structure is proposed, which can be used for the optimal path planning problems such as the unit commitment problems or the maintenance scheduling problems which have been solved by the dynamic programming method or the branch and bound method. To construct the structure of the neural network, an energy function is defined, of which the global minimum means the optimal path of the problem. To avoid falling into one of the local minima during the optimization process, the simulated annealing method is applied via making the slope of the sigmoid transfer functions steeper gradually while the process progresses. As a result, computer(IBM 386-AT 34MHz) simulations can finish the optimal unit commitment problem with 10 power units and 24 hour periods (1 hour factor) in 5 minites. Furthermore, if the full parallel neural network hardware is contructed, the optimization time will be reduced remarkably.

  • PDF

A Hybrid Genetic Algorithm for the Multiobjective Vehicle Scheduling Problems with Service Due Times (서비스 납기가 주어진 다목적차량일정문제를 위한 혼성유전알고리듬의 개발)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, I propose a hybrid genetic algorithm(HGAM) incorporating a greedy interchange local optimization procedure for the multiobjective vehicle scheduling problems with service due times where three conflicting objectives of the minimization of total vehicle travel time, total weighted tardiness, and fleet size are explicitly treated. The vehicle is allowed to visit a node exceeding its due time with a penalty, but within the latest allowable time. The HGAM applies a mixed farming and migration strategy in the evolution process. The strategy splits the population into sub-populations, all of them evolving independently, and applys a local optimization procedure periodically to some best entities in sub-populations which are then substituted by the newly improved solutions. A solution of the HCAM is represented by a diploid structure. The HGAM uses a molified PMX operator for crossover and new types of mutation operator. The performance of the HGAM is extensively evaluated using the Solomons test problems. The results show that the HGAM attains better solutions than the BC-saving algorithm, but with a much longer computation time.

  • PDF

The Economic Dispatch Problem with Valve-Point Effects Usinng a combination of PSO and HS (PSO-HS 알고리즘을 이용한 전력계통의 경제급전)

  • Yoon, Jae-Yeoung;Park, Chi-Yeong;Song, Hyoung-Yong;Park, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.648-649
    • /
    • 2011
  • This Paper presents an efficient approach for solving the economic dispatch (ED) problems with valve-point effects using an combination of particle swarm optimization and harmony search. To reduce a premature convergence effect of PSO algorithm, We proposed PSO-HS algorithm considering evolutionary using harmony search algorithm. To prove the ability of the PSO-HS in solving nonlinear optimization problems, ED problems with non-convex solution spaces are solved with three different approach(PSO, HS, combination of PSO and HS)

  • PDF

A Two-phase Method for the Vehicle Routing Problems with Time Windows (시간대 제약이 있는 차량경로 결정문제를 위한 2단계 해법의 개발)

  • Hong, Sung-Chul;Park, Yang-Byung
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.103-110
    • /
    • 2004
  • This paper presents a two-phase method for the vehicle routing problems with time windows(VRPTW). In a supply chain management(SCM) environment, timely distribution is very important problem faced by most industries. The VRPTW is associated with SCM for each customer to be constrained the time of service. In the VRPTW, the objective is to design the least total travel time routes for a fleet of identical capacitated vehicles to service geographically scattered customers with pre-specified service time windows. The proposed approach is based on ant colony optimization(ACO) and improvement heuristic. In the first phase, an insertion based ACO is introduced for the route construction and its solutions is improved by an iterative random local search in the second phase. Experimental results show that the proposed two-phase method obtains very good solutions with respect to total travel time minimization.

Optimal Offer Strategies for Energy Storage System Integrated Wind Power Producers in the Day-Ahead Energy and Regulation Markets

  • Son, Seungwoo;Han, Sini;Roh, Jae Hyung;Lee, Duehee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2236-2244
    • /
    • 2018
  • We make optimal consecutive offer curves for an energy storage system (ESS) integrated wind power producer (WPP) in the co-optimized day-ahead energy and regulation markets. We build the offer curves by solving multi-stage stochastic optimization (MSSO) problems based on the scenarios of pairs consisting of real-time price and wind power forecasts through the progressive hedging method (PHM). We also use the rolling horizon method (RHM) to build the consecutive offer curves for several hours in chronological order. We test the profitability of the offer curves by using the data sampled from the Iberian Peninsula. We show that the offer curves obtained by solving MSSO problems with the PHM and RHM have a higher profitability than offer curves obtained by solving deterministic problems.

Development of a Neural network for Optimization and Its Application Traveling Salesman Problem

  • Sun, Hong-Dae;Jae, Ahn-Byoung;Jee, Chung-Won;Suck, Cho-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.169.5-169
    • /
    • 2001
  • This study proposes a neural network for solving optimization problems such as the TSP (Travelling Salesman Problem), scheduling, and line balancing. The Hopfield network has been used for solving such problems, but it frequently gives abnormal solutions or non-optimal ones. Moreover, the Hopfield network takes much time especially in solving large size problems. To overcome such disadvantages, this study adopts nodes whose outputs changes with a fixed value at every evolution. The proposed network is applied to solving a TSP, finding the shortest path for visiting all the cities, each of which is visted only once. Here, the travelling path is reflected to the energy function of the network. The proposed network evolves to globally minimize the energy function, and a ...

  • PDF

Control System Synthesis Using BMI: Control Synthesis Applications

  • Chung, Tae-Jin;Oh, Hak-Joon;Chung, Chan-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Biaffine Matrix Inequality (BMI) is known to provide the most general framework in control synthesis, but problems involving BMI's are very difficult to solve because nonconvex optimization should be solved. In the previous paper, we proposed a new solver for problems involving BMI's using Evolutionary Algorithms (EA). In this paper, we solve several control synthesis examples such as Reduced-order control, Simultaneous stabilization, Multi-objective control, $H_{\infty}$ optimal control, Maxed $H_2$ / $H_{\infty}$control design, and Robust $H_{\infty}$ control. Each of these problems is formulated as the standard BMI form, and solved by the proposed algorithm. The performance in each case is compared with those of conventional methods.

Multi-objective job shop scheduling using a competitive coevolutionary algorithm (경쟁 공진화알고리듬을 이용한 다목적 Job shop 일정계획)

  • Lee Hyeon Su;Sin Gyeong Seok;Kim Yeo Geun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Evolutionary algorithm is recognized as a promising approach to solving multi-objective combinatorial optimization problems. When no preference information of decision makers is given, multi-objective optimization problems have been commonly used to search for diverse and good Pareto optimal solution. In this paper we propose a new multi-objective evolutionary algorithm based on competitive coevolutionary algorithm, and demonstrate the applicability of the algorithm. The proposed algorithm is designed to promote both population diversity and rapidity of convergence. To achieve this, the strategies of fitness evaluation and the operation of the Pareto set are developed. The algorithm is applied to job shop scheduling problems (JSPs). The JSPs have two objectives: minimizing makespan and minimizing earliness or tardiness. The proposed algorithm is compared with existing evolutionary algorithms in terms of solution quality and diversity. The experimental results reveal the effectiveness of our approach.

  • PDF

Generalized Cross Decomposition Algorithm for Large Scale Optimization Problems with Applications (대규모 최적화 문제의 일반화된 교차 분할 알고리듬과 응용)

  • Choi, Gyung-Hyun;Kwak, Ho-Mahn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 2000
  • In this paper, we propose a new convex combination weight rule for the cross decomposition method which is known to be one of the most reliable and promising strategies for the large scale optimization problems. It is called generalized cross decomposition, a modification of linear mean value cross decomposition for specially structured linear programming problems. This scheme puts more weights on the recent subproblem solutions other than the average. With this strategy, we are having more room for selecting convex combination weights depending on the problem structure and the convergence behavior, and then, we may choose a rule for either faster convergence for getting quick bounds or more accurate solution. Also, we can improve the slow end-tail behavior by using some combined rules. Also, we provide some computational test results that show the superiority of this strategy to the mean value cross decomposition in computational time and the quality of bounds.

  • PDF