• 제목/요약/키워드: Optimization module

검색결과 387건 처리시간 0.024초

Crystalline Silicon Photo Voltaic (PV) Module의 양산 공정 최적화에 의한 Module 출력 측정 정확성 향상 (Accuracy Enhancement of Output Measurement by Silicon Crystalline Photo Voltaic (PV) Module Production Process Optimization)

  • 이종필;이규만
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.10-16
    • /
    • 2018
  • In silicon crystalline PV (Photo Voltaic) industry, PV module or panel electric power is directly related to the companies' profit. Thus, many PV companies have invested and focused on R&D activities to get the higher module power. The main BOM (Bills of Material) on the module consists of PV solar cell, ribbon, EVA (Ethylene-Vinyl Acetate copolymer), glass and back sheet. Based on consistent research efforts on enhancing module power using BOM, there have been increase of around 5 watt per module every year as results. However, there are lack of studies related to enhancing accuracy of measurement. In this study, the enhancing on the metrology is investigated and the improvement shows actually contribution to company's profit. Especially, the measurement issues related to heat and to quasi state of bandgap diagram by EL(Electro Luminescence) are described in this study.

시뮬레이티드 어닐링에 의한 인공위성 구조체 최적화 (Optimization of Satellite Structures by Simulated Annealing)

  • 임종빈;지상현;박정선
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.262-269
    • /
    • 2005
  • Optimization of a satellite structure under severe space launching environments is performed considering various design constraints. Simulate annealing, one of combinatorial optimization techniques, is used to optimize the satellite. The optimization results by the simulated annealing are compared to those by the method of modified feasible direction and genetic algorithm. Ten bar truss structure is optimized for feasibility study of the simulated annealing. Finally, the satellite structure is optimized by the simulated annealing algorithm under space environment. Weights of the satellite upper platform and propulsion module are minimized with consideration of several static and dynamic constraints. MSC/NASTRAN is used to find the static and dynamic responses. Simulated annealing has been programmed and integrated with the finite element analysis program for optimization. It is shown that the simulated annealing algorithm can be extended to the optimization of space structures.

통합 해석 및 설계 최적화 기술을 이용한 무인기 성능 향상 연구 (UAV Performance Improvement Using Integrated Analysis and Design Optimization Technology)

  • 김지민;누엔 반;서정일;티안 막심;이재우;김상호
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.30-38
    • /
    • 2013
  • This paper describes the design optimization of Unmanned Aerial Vehicles(UAVs). An optimization framework has been developed and implemented for the conceptual design of UAVs. An integrated design analysis program was developed with several analysis modules such as propulsion, performance, mission, weight, and stability and control. A UAV configuration design optimization was performed by implementing the integrated analysis to enhance the endurance of UAVs. A SQP optimizer was utilized to build an optimization module for this program and sensitivity analysis was performed to determine the trends of shape variables for developing optimization objective. In conclusion, the results indicate that the resulting optimized UAVs configurations show performance improvements over the baseline design and reliable analysis results.

Protection Circuit Module에 최적화된 60 V급 TDMOSFET 최적화 설계에 관한 연구 (Study on Design of 60 V TDMOSFET for Protection Circuit Module)

  • 이현웅;정은식;오름;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.340-344
    • /
    • 2012
  • Protected Circuit Module protects battery from over-charge and over-discharge, also prevents accidental explosion. Therefore, power MOSFET is essential to operate as a switch within the module. To reduce power loss of MOSFET, the on state voltage drop should be lowered and the switching time should be shorted. However there is trade-off between the breakdown voltage and the on state voltage drop. The TDMOS can reduce the on state voltage drop. In this paper, effect of design parameter variation on electrical properties of TDMOS, were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get 65% higher breakdown voltage and 17.4% on resistance enhancement.

모바일 TFT-LCD 응용을 위한 새로운 형태의 자동화질 최적화 시스템 개발 (Development of a New Automatic Image Quality Optimization System for Mobile TFT-LCD Applications)

  • 류지열;노석호
    • 전자공학회논문지SC
    • /
    • 제47권1호
    • /
    • pp.17-28
    • /
    • 2010
  • 본 논문은 DSP를 이용한 새로운 형태의 TFT-LCD 자동 화질 최적화 시스템을 제안한다. 실제 산업 현장에서 이와 같은 화질 최적화 과정은 시행착오를 반복하는 형식으로 진행되어 많은 시간이 소요되고 있으며 LCD 개발 엔지니어들의 성향 및 숙련도에 따라 조정 결과에도 편차가 큰 문제점이 있다. 이러한 시스템은 평균 감마 오차, 감마 조정 시간 및 플리커 등을 줄이기 위해 모바일 LCD 구동 IC 내의 감마 조정 레지스터들과 전압 설정 레지스터들을 자동적으로 제어한다. 제안된 최적 화질 향상 시스템은 측정 대상이 되는 모듈 (MUT, LCD 모듈), 제어 프로그램, 휘도 측정용 멀티미디어 디스플레이 측정기 및 인터페이스용 제어 보드로 구성되어 있다. 개발된 시스템에는 참조 감마 곡선과의 6-점 프로그램 정합 기술을 이용한 새로운 알고리즘 및 자동 전압 설정 알고리즘이 내장되어 있다. 개발된 알고리즘과 프로그램은 범용 LCD 모듈에 적용가능하다. 또한 1.8, 2.0, 2.2 및 3.0 감마를 조정할 뿐만 아니라 플리커 수준을 자동으로 조절한다. 제어 보드는 DSP와 FPGA로 구성되어 있고, RGB 및 CPU와 같은 다양한 인터페이스들을 지원한다. 개발된 자동 감마 시스템은 기존의 시스템에 비해 현저히 짧은 감마 조정 시간 및 아주 작은 평균 감마 오차를 보였다. 또한 본 논문에서 제안하는 시스템은 최적화된 감마 곡선 설정을 이용한 개발 공정을 향상시키고, 고화질의 LCD를 제공하는데 아주 유용하다.

Efficient Decoupling Capacitor Optimization for Subsystem Module Package

  • Lim, HoJeong;Fuentes, Ruben
    • 마이크로전자및패키징학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2022
  • The mobile device industry demands much higher levels of integration and lower costs coupled with a growing awareness of the complete system's configuration. A subsystem module package is similar to a board-level circuit that integrates a system function in a package beyond a System-in-Package (SiP) design. It is an advanced IC packaging solution to enhance the PDN and achieve a smaller form factor. Unlike a system-level design with a decoupling capacitor, a subsystem module package system needs to redefine the role of the capacitor and its configuration for PDN performance. Specifically, the design of package's form factor should include careful consideration of optimal PDN performance and the number of components, which need to define the decoupling capacitor's value and the placement strategy for a low impedance profile with associated cost benefits. This paper will focus on both the static case that addresses the voltage (IR) drop and AC analysis in the frequency domain with three specific topics. First, it will highlight the role of simulation in the subsystem module design for the PDN. Second, it will compare the performance of double-sided component placement (DSCP) motherboards with the subsystem module package and then prove the advantage of the subsystem module package. Finally, it will introduce three-terminal decoupling capacitor (decap) configurations of capacitor size, count and value for the subsystem module package to determine the optimum performance and package density based on the cost-effective model.

풍향에 따른 화재영향을 고려한 FPSO 상부구조물 고압가스 모듈내부의 장비 최적배치 연구 (Layout Optimization of FPSO Topside High Pressure Equipment Considering Fire Accidents with Wind Direction)

  • 배정훈;정연욱;신성철;김수영
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.404-410
    • /
    • 2014
  • The purpose of this study was to find the optimal arrangement of FPSO equipment in a module while considering the economic value and fire risk. We estimated the economic value using the pipe connections and pump installation cost in an HP (high pressure) gas compression module. The equipment risks were also analyzed using fire scenarios based on historical data. To consider the wind effect during a fire accident, fuzzy modeling was applied to improve the accuracy of the analysis. The objective functions consisted of the economic value and fire risk, and the constraints were the equipment maintenance and weight balance of the module. We generated a Pareto-optimal front group using a multi-objective GA (genetic algorithm) and suggested an equipment arrangement method that included the opinions of the designer.

The Preliminary Design Guideline for Tall Building: Exploration of Planning Factors & Building Factors

  • Choi, Yong Sun
    • Architectural research
    • /
    • 제4권1호
    • /
    • pp.1-6
    • /
    • 2002
  • Every year new tall buildings are being conceived, designed, and built with new schemes. Thus it is important to explore the factors that affect tall building design. Thus it is important to explore the tall building design factors. The planning and design of tall buildings require different criteria than those that exist in regular size buildings. Tall buildings are uniquely expressed by their structural systems where exterior esthetic and requirements of space drive the form and composition of the structural systems. Therefore the exploration of design factors is the key to achieve optimum building systems. Optimization as mentioned here is associated with the efficiency of the different building systems. To achieve an optimal system, there is a need for an understanding of the factors that affect on overall tall building design such as planning module, building function, lease span, floor-to-floor-height, building height (aspect ratio), structural system, environmental systems. In this paper a statistical approach will be used and will be based on data collected from the practice through a rigorous survey taken. This information is tabulated and analyzed. The major target of investigation will be lease span related to space requirement in the tall building planning. Factors related to lease spans, such as function, floor-to-floor height, planning module, building height, overall plan dimension, and plan ratio (building geometry), will be looked at carefully. IN conclusion, this approach of optimization can introduce a preliminary design guideline for tall building projects. The purpose of the paper should shed some light on the optimum tall building design criteria.

Use of design optimization techniques in solving typical structural engineering related design optimization problems

  • Fedorik, Filip;Kala, Jiri;Haapala, Antti;Malaska, Mikko
    • Structural Engineering and Mechanics
    • /
    • 제55권6호
    • /
    • pp.1121-1137
    • /
    • 2015
  • High powered computers and engineering computer systems allow designers to routinely simulate complex physical phenomena. The presented work deals with the analysis of two finite element method optimization techniques (First Order Method-FOM and Subproblem Approximation Method-SAM) implemented in the individual Design Optimization module in the Ansys software to analyze the behavior of real problems. A design optimization is a difficult mathematical process, intended to find the minimum or maximum of an objective function, which is mostly based on iterative procedure. Using optimization techniques in engineering designs requires detailed knowledge of the analyzed problem but also an ability to select the appropriate optimization method. The methods embedded in advanced computer software are based on different optimization techniques and their efficiency is significantly influenced by the specific character of a problem. The efficiency, robustness and accuracy of the methods are studied through strictly convex two-dimensional optimization problem, which is represented by volume minimization of two bars' plane frame structure subjected to maximal vertical displacement limit. Advantages and disadvantages of the methods are described and some practical tips provided which could be beneficial in any efficient engineering design by using an optimization method.

Study of EMC Optimization of Automotive Electronic Components using ECAE

  • Kim, Tae-Ho;Kim, Mi-Ro;Jung, Sang-Yong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.248-251
    • /
    • 2014
  • As more vehicles become equipped with advanced electronic control systems, more consideration is needed with regards to automotive safety issues related to the effects of electromagnetic waves. Unwanted electromagnetic waves from the antenna, electricity and other electronic devices cause the performance and safety problem of automotive components. In general, Power Integrity and Signal Integrity analysis have been widely used, but these analyses have stayed PCB level. PCB base analysis is different from radiated emission TEST condition so its results are used just for reference. This paper proposes EMC optimization technology using module level 3-dimensional radiation simulation process closed to fundamental test conditions. If module level EMC analysis, which is proposed in this study, is applied to all automotive electronics systems, unexpected EMC noise will be prevented.