• Title/Summary/Keyword: Optimization coating condition

Search Result 26, Processing Time 0.026 seconds

Characteristics of Bending Strength on Coating Condition of Metal Surface Polyurethan Coating Material (금속표면에 폴리우레탄코팅한 소재의 코팅조건 변화에 따른 굽힘강도 특성)

  • 이강길
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.124-129
    • /
    • 2001
  • The research on anticorrosive of valve for ship, waterworks, and drainage system is very important. The purpose of this paper is to develop the metal/polyurethan adhesive technique at insider of the value to prevent corrosion in the value. It is performed to the bending strength test by using metal /polyurethan in the metals (SB41, Al6061). It is investigated to the effects of bending strength on curing temperature, preheating time and curing time, and to the fracture mechanism of metal/polyurethan adhensived specimen. As a results, we find that the bending strength is the highest at curing temperature of 11$0^{\circ}C$ and the curing time is 60 minutes in metal/polyurethan adhesive specimen.

  • PDF

The optimization of ELISA for methamphetamine determination : the effect of immunogen, tracer and antibody purification method on the sensitivity

  • Choi, Jeongeun;Choi, Myung-Ja;Kim, Choonmi;Cho, Young-Shik;Chin, Jaeho;Jo, Young-Ah
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 1997
  • To obtain more sensitive immunoassay for methamphetamine (MA) determination, the optimum condition of enzyme-linked immunosorbent assay (ELISA) was investigated in regard to immunogens, antibody purification methods and coating tracers. Activated MA, N-(4-aminobutyl)methamphetamine (4-ABMA), was conjugated with bovine serum albumin (BSA) or keyhole limpet hemocyanin (KLH) and used as immunogen. The antibodies were purified by protein G chromatography or various immunoaffinity chromatography-linked MA-protein ligands, such as MA-BSA, MA-KLH or MA-ovalbumin (OVA). Each purified antibody was characterized by means of sensitivity and cross-reactivity using the three MA-protein coating tracers, MA-BSA, MA-KLH and MA-OVA. The best sensitivity of each antibody was acquired with the MA-OVA tracer although the tracer concentration and the antibody titer level at optimum condition were varied. The antibody with high titer level did not always yield good sensitivity. At optimum condition, immunoaffinity chromatography-purified antibodies were better for sensitivity and for specificity than protein G-purified antibodies. The cross-reactivity of the purified antibodies seemed to be affected by immunogen structure and showed somewhat different patterns according to the immunoaffinity ligand utilized. These data show that the antibody purification method as well as choice of coating tracer and immunogen is essential for the sensitivity and specificity of EIA; the optimum condition for assay should be discovered using various methods and combinations.

  • PDF

Coating Color Immobilization Content 측정기법 및 영향인자에 대한 연구

  • 곽상효;김진현
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.103-110
    • /
    • 2000
  • This study was done in order to increase production speed using coater dryer in maximum capacity without print mottle. The aim of this study was to measure coating color immobilization content(CCIC) and to decrease CCIC through coating color optimization. The final goal of this study was the prevention of print mottle in maximum drying condition by CCIC control. As a result the measuring method of CCIC was set by brightness transition and the effective factors in pigments and binders were defined. With color optimization considered this factors, CCIC was decreased by 4%. Through this CCIC decrease and modification of coater utility, the print mottle was prevented even though using coater dryer in maximum.

  • PDF

Design Requirements Review and Time-dependant CP Performance Analysis for Corrosion Protection Design Optimization of Offshore Structure (해상구조물의 방식설계 최적화를 위한 설계요건 분석 및 시간의존적 방식성능 해석)

  • Park, Jae-Cheul;Choi, Yoo-Youl;Pyeon, Kang-Il;Chun, Kang-Woo;Jang, Hwa-Sup;Roh, Gill-Tae
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.408-415
    • /
    • 2016
  • The offshore structures exposed to harsh corrosive such as the marine environment is essential for the quality management technique throughout the life cycle of initial design, construction and operation. Also, it should satisfy the design life and ensure the safety of the substructure with optimization of design process. This study focused on optimization of design condition for corrosion protection of wind turbine structure and computational analyzing was performed to evaluate the performance of corrosion protection with utilizing practical experimental data. We expect this analytical study contribute to improve the corrosion maintenance stability and economical efficiency of designing wind turbine structures. As a result, the design of cathodic protection system using sacrificial anodes required accurate identification of current density in order to meet the long term design life, which can be seen that a change of structure surface's coating breakdown factor is one of the key influencing factors.

Optimization of HVOF Spray Parameters for $Cr_3C_2 - 7wt%NiCr$ Coating Powder by Experimental Design Method (실험계획법에 의한 $Cr_3C_2 - 7wt%NiCr$ 용사분말의 HVOF 용사변수 최적화)

  • 김병희;서동수
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.125-134
    • /
    • 1997
  • This study was conducted by L9 orthogonal array to obtain optimum spray parameters for This study was conducted by L9 orthogonal array to obtain optimum spray parameters for $Cr_3C_2 - 7wt%$(80wt%Ni-20wt%Cr) coating powder. The factors were hydrogen flow rate, oxygen flow rate, gun-to-work distance, powder feed rate. And evaluation methods for the coating were surface roughness, oxygen concentration, micro-hardness, pore size and distribution, low angle ($30^{\circ}$) erosion rate, and microstructure of coating. The optimum HVOF spray conditions were proved as follows : hydroen flow rate ; 681 SLPM, oxygen flow rate ; 215 SLPM $H^2/O^2 ratio= 3.16), gun-to-work distance ; 22cm, powder feed rate; 25g/min. The hardness (Hv300) was 1147 and the erosion rate ($30^{\circ}$degree) was $3.16\times10^{-4}$g/g. It is believed that the optimized spray conditions can be improved the wear-resistance and anti-erosion characteristics of the coating.

  • PDF

Effect of Gun Nozzle Movement Speed in HVOF Process on the properties of Coating Thickness and Surface (HVOF 용사 건의 이동속도가 WC-Co 코팅층의 두께 형성 및 표면 특성에 미치는 영향)

  • Kim, Kibeom;Kim, Kapbae;Jung, Jongmin;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.5
    • /
    • pp.262-269
    • /
    • 2022
  • In order to process materials such as engineering plastics, which are difficult to mold due to their high strength compared to conventional polymer materials, it is necessary to improve the hardness and strength of parts such as screws and barrels of injection equipment in extrusion system. High-velocity oxygen fuel (HVOF) process is well known for its contribution on enhancement of surface properties. Thus in this study, using the HVOF process, WC coating layers of different thicknesses were bonded to the surface of S30C substrate by controlling the movement speed of the spray nozzle and each property was evaluated to decide the optimization condition. Through the results, the thickness of WC coating layer increased from 0 to 200 ㎛ maximum, along with the decrement of nozzle movement speed and the surface hardness get increased. Especially, the coated layer with the thickness over 180 ㎛ under the nozzle speed 500 mm/s had high hardness than thinner layer. In addition, the amount of wear consumed per unit time was also significantly reduced due to the formation of the coating layer.

Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow (노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구)

  • Park, Jung Jae;Yoon, Suk Goo;Kim, Ho Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

Optimization of PMD(Pre-Metal Dielectric) Linear Nitride Precess (PMD(Pre-Metal Dielectric) 선형 질화막 공정의 최적화에 대한 연구)

  • 정소영;김상용;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.779-784
    • /
    • 2001
  • In this work, we studied the characteristics of nitride films for the optimization of PMD(pro-metal dielectric) linear process, which can be applied to the recent semiconductor manufacturing process. We split the deposit condition of nitride films into four parts such as PO(protect overcoat) nitride, baseline, low hydrogen and high stress and low hydrogen, respectively. We tried to find out correlation between BPSG deposition and densification. In order to analyze the changes of Si-H and Si-NH-Si bonding density, we used FTIR area method. We also investigated the crack generation on wafer edge after BPSG densification, and the changes of nitride film stress as a function of RF power variation to judge whether the deposited films.

  • PDF

Optimization of the firing process condition for high efficiency solar cells on single-crystalline silicon (고효율 Solar Cell 제조를 위한 Firing 공정 조건의 최적화)

  • Jeong, Se-Won;Lee, Seong-Jun;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2006.10a
    • /
    • pp.4-5
    • /
    • 2006
  • This paper represents modeling and optimization techniques for solar cell process on single-crystalline float zone (FZ) wafers with high efficiency; There were the four significant processes : i)emitter formation by diffusion, anti-reflection-coating (ARC) with silicon nitride using plasma-enhanced chemical vapor deposition (PECVD); iii)screen-printing for front and back metallization; and iv)contact formation by firing. In order to increase the performance of solar cells, the contact formation process is modeled and optimized. This paper utilizes the design of experiments (DOE) in contact formation to reduce process time, fabrication costs. The experiments were designed by using central composite design which is composed of $2^4$ factorial design augmented by 8 axial points with three center points. After contact formation process, the efficiency of the solar cell is modeled using neural networks. This model is used to analyse the characteristics of the process, and to optimize the process condition using genetic algorithms (GA). Finally, find optimal recipe for solar cell efficiency.

  • PDF

Development of ELISA Method for the Determination of Compound K (Compound K 측정을 위한 ELISA법 개발)

  • Ryu, Mina;Li, Hai Guang;Sung, Jong Hwan;Sung, Chung Ki
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.279-282
    • /
    • 2015
  • In order to quantify compound K(CK), anticancer component of Panax ginseng C. A. Meyer, high titer rabbit polyclonal antibodies (pAbs) were raised against a conjugate of CK and bovine serum albumin coupled by a periodate oxidation method. Coating antigen (CK-OVA) was also prepared by the same method with OVA. As a result of optimization of antiserum dilution (2,000 fold), coating antigen ($25{\mu}g/ml$) and other condition (incubation time, temperature and washing method), ELISA method for the determination of CK was established. The measuring range extended from 0.5 ng/ml to 25 ng/ml of CK. The antibodies exhibited minor or even no cross reactivities with protopanaxatriol (1.56%) and other tested ginsenosides, $GRb_1$ (0.11%), $GRg_1$ (0.07%) except protopanaxadiol (87.2%) from the structural similarity. And the antibody showed good correlation (r=0.987) between the assay values obtained by this ELISA method and HPLC. Therefore, the ELISA method could be very useful tools for the determination of CK in biological fluids because of their high sensitivity and specificity.