• 제목/요약/키워드: Optimization calculation

검색결과 634건 처리시간 0.025초

CMA-ES를 활용한 수정질점탄도모델의 탄도수정계수 설정기법 (Fitting Coefficient Setting Method for the Modified Point Mass Trajectory Model Using CMA-ES)

  • 안세일;이교복;강태형
    • 한국군사과학기술학회지
    • /
    • 제19권1호
    • /
    • pp.95-104
    • /
    • 2016
  • To make a firing table of artillery with trajectory simulation, a precise trajectory model which corresponds with real firing test is required. Recent 4-DOF modified point mass trajectory model is considered accurate as a theoretical model, but fitting coefficients are used in calculation to match with real firing test results. In this paper, modified point mass trajectory model is presented and method of setting ballistic coefficient is introduced by applying optimization algorithms. After comparing two different algorithms, Particle Swarm Optimization and Covariance Matrix Adaptation - Evolutionary Strategy, we found that using CMA-ES algorithm gives fine optimization result. This fitting coefficient setting method can be used to make trajectory simulation which is required for development of new projectiles in the future.

무족화 첩 광섬유 격자 재구성을 위한 혼합 최적화 방법 (Hybrid Optimization Method for the Reconstruction of Apodized Chirped Fiber Bragg Gratings)

  • 윤재순;임기건
    • 한국광학회지
    • /
    • 제27권6호
    • /
    • pp.203-211
    • /
    • 2016
  • 광섬유 격자의 반사스펙트럼을 분석하여 무족화 첩 광섬유 격자를 재구성하는 혼합 최적화 방법을 제안한다. 반사 스펙트럼의 힐버트 변환을 사용하여 설계 변수들의 추정값을 결정하고 층분리 알고리즘을 활용한 차분진화 최적화를 통하여 격자의 설계변수들을 최종 확정하였다. 특성 격자 주기 변화율 2 nm/cm인 무족화 첩 격자에 대한 계산 결과는 격자주기 변화율에 대해 $6{\times}10^{-5}nm/cm$, 굴절률 변조에 대해 $3{\times}10^{-9}$의 정확도로 설계 변수를 재구성할 수 있었으며 종래의 최적화 방법에 비하여 신속성과 신뢰성을 개선할 수 있음을 확인하였다.

Seismic behavior enhancement of frame structure considering parameter sensitivity of self-centering braces

  • Xu, Longhe;Xie, Xingsi;Yan, Xintong;Li, Zhongxian
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.45-56
    • /
    • 2019
  • A modified mechanical model of pre-pressed spring self-centering energy dissipation (PS-SCED) brace is proposed, and the hysteresis band is distinguished by the indication of relevant state variables. The MDOF frame system equipped with the braces is formulated in an incremental form of linear acceleration method. A multi-objective genetic algorithm (GA) based brace parameter optimization method is developed to obtain an optimal solution from the primary design scheme. Parameter sensitivities derived by the direct differentiation method are used to modify the change rate of parameters in the GA operator. A case study is conducted on a steel braced frame to illustrate the effect of brace parameters on node displacements, and validate the feasibility of the modified mechanical model. The optimization results and computational process information are compared among three cases of different strategies of parameter change as well. The accuracy is also verified by the calculation results of finite element model. This work can help the applications of PS-SCED brace optimization related to parameter sensitivity, and fulfill the systematic design procedure of PS-SCED brace-structure system with completed and prospective consequences.

Parametric optimization of FPSO hull dimensions for Brazil field using sophisticated stability and hydrodynamic calculations

  • Lee, Jonghun;Kim, Byung Chul;Ruy, Won-Sun;Han, Ik Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.478-492
    • /
    • 2021
  • In this study, hull dimensions of an FPSO were optimized to maximize its operability at Brazil field. In contrast with the previous works which have used simplified models to evaluate some indicators related to stability and hydrodynamic performances of FPSOs for its own optimal design, we developed a generic hull and compartment modeler and sophisticated stability and hydrodynamic calculation modules. With the aid of the developed tools, the hull optimization was performed with initial dimensions of an FPSO originally designed for west Africa field. The optimization results indicated the relative importance of hydrodynamic performances compared with stability performances for the FPSO hull dimensioning by showing that there were 3 active constraints related to them, which were the natural periods of heave and roll and the maximum pitch angle under 1-year return period waves at full load condition. To the author's knowledge, this study is the first attempt to combine altogether the hull and compartment modeling and full set of stability and hydrodynamic calculations precisely to optimize an FPSO's hull dimensions within 30 min. Also, it is worthwhile to mention that the developed methods are generic enough to be applied to all types of ship-shaped offshore platforms.

전산유체해석과 다구찌 및 미니탭 방법을 활용한 하수처리장 분배조 웨어 최적화 (Optimization of Distribution Basin Weirs at a Sewage Treatment Plant Based on Computational Fluid Analysis Using the Taguchi and Minitab Method)

  • 정용준;박해식;조영만
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.983-991
    • /
    • 2021
  • The role of the distribution basin role is to apportion incoming raw water to the primary sedimentation basin as part of the water treatment process. The purpose of this study was to calculate the amount of water in the distribution basin using computational fluid dynamics (CFD) analysis and to find a way to improve any non-uniformity. We used the Taguchi method and the minitab tool as optimization methods. The results of the CFD calculation showed that the distribution flow had a deviation of 5% at the minimum inflow, 10% at the average inflow, and 22% at the maximum inflow. At maximum flow, the appropriate heights of the 7 weirs(C, D, A, B, E, F, G) were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, according to the Taguchi optimization tool. Here, the maximum deviation of the distribution amount was 9% and the standard deviation was 23.7. The appropriate heights of the 7 weirs, according to the Minitab tool, were 40 mm, 20 mm, 20 mm, 0, 0, 0, and 20 mm, respectively, for weirs C, D, A, B, E, F, and G. Therefore, the maximum deviation of the distribution amount was 8% and the standard deviation was 17.1, which was slightly improved compared to the Taguchi method.

후류 영향 최적화 기반 실시간 풍력발전단지 발전 제어용 EMS의 설계 및 구현 (Design and Implementation of EMS for Real-Time Power Generation Control of Wind Farm Based on Wake Effect Optimization)

  • 김준형;성기원;정성환
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1097-1108
    • /
    • 2022
  • This paper aimed to design and implement an EMS for real-time power generation control based on wake effect optimization of wind farm, and then to test it in commercial operating wind farm. For real-time control, we proposed the wake band-based optimization and setting the wake effect distance limit, and when the wake effect distance limit was set to 7D in the actual wind farm layout, the calculation time was improved by about 93.94%. In addition, we designed and implemented the script-based EMS for flexible operation logic management in preparation for unexpected issues during testing, and it was installed and tested on a wind farm in commercial operation. However, three issues arose during the testing process. These are the communication interface problem of meteorological tower, the problem of an abnormal wake effect, and the problem of wind turbine yaw control. These issues were solved by modifying the operation logic using EMS's script editor, and the test was successfully completed in the wind farm in commercial operation.

입자크기분포 설정 및 멀티스레딩을 통한 소외사고영향분석 최적화 타당성 평가 (Feasibility Study on the Optimization of Offsite Consequence Analysis by Particle Size Distribution Setting and Multi-Threading)

  • 김승환;김성엽
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.96-103
    • /
    • 2024
  • The demand for mass calculation of offsite consequence analysis to conduct exhaustive single-unit or multi-unit Level 3 PSA is increasing. In order to perform efficient offsite consequence analyses, the Korea Atomic Energy Research Institute is conducting model optimization studies to minimize the analysis time while maintaining the accuracy of the results. A previous study developed a model optimization method using efficient plume segmentation and verified its effectiveness. In this study, we investigated the possibility of optimizing the model through particle size distribution setting by checking the reduction in analysis time and deviation of the results. Our findings indicate that particle size distribution setting affects the results, but its effect on analysis time is insignificant. Therefore, it is advantageous to set the particle size distribution as fine as possible. Furthermore, we evaluated the effect of multithreading and confirmed its efficiency. Future optimization studies should be conducted on various input factors of offsite consequence analysis, such as spatial grid settings.

다항식 선택을 위한 효율적인 최적화 기법 (Efficient Optimization Method for Polynomial Selection)

  • 김수리;권희택;이용성;장남수;윤기순;김창한;박영호;홍석희
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.631-643
    • /
    • 2016
  • 현재까지 알려진 가장 효율적인 인수분해 방법은 General Number Field Sieve (GNFS)를 이용하는 방법이다. CADO-NFS는 GNFS를 기반으로 구현된 공개된 소프트웨어로 RSA-704의 인수분해에 사용된 도구이다. CADO-NFS에서 다항식 선택은 크게 다항식을 생성하는 과정과 이를 최적화하는 과정으로 나누어져 있다. 그러나 CADO-NFS에서 다항식의 최적화 과정은 전체 다항식 선택 소요 시간 중 약 90%를 차지할 정도로 큰 부하를 주고 있다. 본 논문에서는 사전 연산 테이블을 이용하여 다항식 최적화 과정의 부하를 줄이는 방안을 제안한다. 제안하는 방법은 기존 CADO-NFS의 다항식과 같은 다항식을 선택하지만, 다항식 선택에 걸리는 시간은 약 40% 감소한다.

Development of a Method for Improving the Electric Field Distribution in Patients Undergoing Tumor-Treating Fields Therapy

  • Sung, Jiwon;Seo, Jaehyeon;Jo, Yunhui;Yoon, Myonggeun;Hwang, Sang-Gu;Kim, Eun Ho
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1577-1583
    • /
    • 2018
  • Tumor-treating fields therapy involves placing pads onto the patient's skin to create a low- intensity (1 - 3 V/cm), intermediate frequency (100 - 300 kHz), alternating electric field to treat cancerous tumors. This new treatment modality has been approved by the Food and Drug Administration in the USA to treat patients with both newly diagnosed and recurrent glioblastoma. To deliver the prescribed electric field intensity to the tumor while minimizing exposure of organs at risk, we developed an optimization method for the electric field distribution in the body and compared the electric field distribution in the body before and after application of this optimization algorithm. To determine the electric field distribution in the body before optimization, we applied the same electric potential to all pairs of electric pads located on opposite sides of models. We subsequently adjusted the intensity of the electric field to each pair of pads to optimize the electric field distribution in the body, resulting in the prescribed electric field intensity to the tumor while minimizing electric fields at organs at risk. A comparison of the electric field distribution within the body before and after optimization showed that application of the optimization algorithm delivered a therapeutically effective electric field to the tumor while minimizing the average and the maximum field strength applied to organs at risk. Use of this optimization algorithm when planning tumor-treating fields therapy should maintain or increase the intensity of the electric field applied to the tumor while minimizing the intensity of the electric field applied to organs at risk. This would enhance the effectiveness of tumor-treating fields therapy while reducing dangerous side effects.

선박 블록 조립 후 최적 정도 계산을 위한 알고리즘 연구 (An Algorithm for Optimized Accuracy Calculation of Hull Block Assembly)

  • 노재규
    • 해양환경안전학회지
    • /
    • 제19권5호
    • /
    • pp.552-560
    • /
    • 2013
  • 본 연구에서는 기존의 블록 조립 후 정도 계산 절차와 블록 조립의 특성을 고려한 최적 정도 계산 알고리즘 개발을 위한 연구를 수행하였다. 여기서 제안된 알고리즘은 생산관리점들 중 특정한 관리점을 기준으로 생산관리점들의 설계와 측정 데이터 사이의 평균제곱근 오차의 합을 목적함수로 가진다. 생산관리점들은 접합면 상의 데이터와 그 외의 데이터로 구분하였으며, 구분된 데이터는 정합 과정에서 사용되어지는 6가지 자유도 조합 결정에 있어 다양한 제약조건 구성과 목적함수 계산에 사용하였다. 목적함수 및 제약조건과 함께 탑재공정을 고려하여 설계와 측정 계산 대상점들 간의 오차가 허용 오차 이내에 포함되는지를 확인하는 과정이 포함되는 점과 점 관계를 이용하는 변형 ICP 알고리즘과 sampling법을 혼합하여 최소 오차 범위를 계산하는 최적 정도 계산 알고리즘을 개발하였다. 실제 공정에서 확인된 블록 측정 데이터를 개발된 알고리즘에 적용한 결과에 따르면 최적 정도 계산의 대상점은 접합면 상의 점들만으로 계산을 수행하는 것보다 전체 점을 대상으로 계산하는 것이 더 작은 오차를 가지며 접합면의 한 점을 고정된 일치점으로 두고 모든 생산관리점들을 대상점으로 계산 하는 것이 최소 오차를 가지는 최적 정도 계산방법이라는 결론을 도출하였다.