• Title/Summary/Keyword: Optimization algorithms

Search Result 1,732, Processing Time 0.022 seconds

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Development of Remote Measurement Method for Reinforcement Information in Construction Field Using 360 Degrees Camera (360도 카메라 기반 건설현장 철근 배근 정보 원격 계측 기법 개발)

  • Lee, Myung-Hun;Woo, Ukyong;Choi, Hajin;Kang, Su-min;Choi, Kyoung-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.157-166
    • /
    • 2022
  • Structural supervision on the construction site has been performed based on visual inspection, which is highly labor-intensive and subjective. In this study, the remote technique was developed to improve the efficiency of the measurements on rebar spacing using a 360° camera and reconstructed 3D models. The proposed method was verified by measuring the spacings in reinforced concrete structure, where the twelve locations in the construction site (265 m2) were scanned within 20 seconds per location and a total of 15 minutes was taken. SLAM, consisting of SIFT, RANSAC, and General framework graph optimization algorithms, produces RGB-based 3D and 3D point cloud models, respectively. The minimum resolution of the 3D point cloud was 0.1mm while that of the RGB-based 3D model was 10 mm. Based on the results from both 3D models, the measurement error was from 10.8% to 0.3% in the 3D point cloud and from 28.4% to 3.1% in the RGB-based 3D model. The results demonstrate that the proposed method has great potential for remote structural supervision with respect to its accuracy and objectivity.

Active VM Consolidation for Cloud Data Centers under Energy Saving Approach

  • Saxena, Shailesh;Khan, Mohammad Zubair;Singh, Ravendra;Noorwali, Abdulfattah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.345-353
    • /
    • 2021
  • Cloud computing represent a new era of computing that's forms through the combination of service-oriented architecture (SOA), Internet and grid computing with virtualization technology. Virtualization is a concept through which every cloud is enable to provide on-demand services to the users. Most IT service provider adopt cloud based services for their users to meet the high demand of computation, as it is most flexible, reliable and scalable technology. Energy based performance tradeoff become the main challenge in cloud computing, as its acceptance and popularity increases day by day. Cloud data centers required a huge amount of power supply to the virtualization of servers for maintain on- demand high computing. High power demand increase the energy cost of service providers as well as it also harm the environment through the emission of CO2. An optimization of cloud computing based on energy-performance tradeoff is required to obtain the balance between energy saving and QoS (quality of services) policies of cloud. A study about power usage of resources in cloud data centers based on workload assign to them, says that an idle server consume near about 50% of its peak utilization power [1]. Therefore, more number of underutilized servers in any cloud data center is responsible to reduce the energy performance tradeoff. To handle this issue, a lots of research proposed as energy efficient algorithms for minimize the consumption of energy and also maintain the SLA (service level agreement) at a satisfactory level. VM (virtual machine) consolidation is one such technique that ensured about the balance of energy based SLA. In the scope of this paper, we explore reinforcement with fuzzy logic (RFL) for VM consolidation to achieve energy based SLA. In this proposed RFL based active VM consolidation, the primary objective is to manage physical server (PS) nodes in order to avoid over-utilized and under-utilized, and to optimize the placement of VMs. A dynamic threshold (based on RFL) is proposed for over-utilized PS detection. For over-utilized PS, a VM selection policy based on fuzzy logic is proposed, which selects VM for migration to maintain the balance of SLA. Additionally, it incorporate VM placement policy through categorization of non-overutilized servers as- balanced, under-utilized and critical. CloudSim toolkit is used to simulate the proposed work on real-world work load traces of CoMon Project define by PlanetLab. Simulation results shows that the proposed policies is most energy efficient compared to others in terms of reduction in both electricity usage and SLA violation.

A Deep Learning-based Real-time Deblurring Algorithm on HD Resolution (HD 해상도에서 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘)

  • Shim, Kyujin;Ko, Kangwook;Yoon, Sungjoon;Ha, Namkoo;Lee, Minseok;Jang, Hyunsung;Kwon, Kuyong;Kim, Eunjoon;Kim, Changick
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2022
  • Image deblurring aims to remove image blur, which can be generated while shooting the pictures by the movement of objects, camera shake, blurring of focus, and so forth. With the rise in popularity of smartphones, it is common to carry portable digital cameras daily, so image deblurring techniques have become more significant recently. Originally, image deblurring techniques have been studied using traditional optimization techniques. Then with the recent attention on deep learning, deblurring methods based on convolutional neural networks have been actively proposed. However, most of them have been developed while focusing on better performance. Therefore, it is not easy to use in real situations due to the speed of their algorithms. To tackle this problem, we propose a novel deep learning-based deblurring algorithm that can be operated in real-time on HD resolution. In addition, we improved the training and inference process and could increase the performance of our model without any significant effect on the speed and the speed without any significant effect on the performance. As a result, our algorithm achieves real-time performance by processing 33.74 frames per second at 1280×720 resolution. Furthermore, it shows excellent performance compared to its speed with a PSNR of 29.78 and SSIM of 0.9287 with the GoPro dataset.

Parameter search methodology of support vector machines for improving performance (속도 향상을 위한 서포트 벡터 머신의 파라미터 탐색 방법론)

  • Lee, Sung-Bo;Kim, Jae-young;Kim, Cheol-Hong;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.329-337
    • /
    • 2017
  • This paper proposes a search method that explores parameters C and σ values of support vector machines (SVM) to improve performance while maintaining search accuracy. A traditional grid search method requires tremendous computational times because it searches all available combinations of C and σ values to find optimal combinations which provide the best performance of SVM. To address this issue, this paper proposes a deep search method that reduces computational time. In the first stage, it divides C-σ- accurate metrics into four regions, searches a median value of each region, and then selects a point of the highest accurate value as a start point. In the second stage, the selected start points are re-divided into four regions, and then the highest accurate point is assigned as a new search point. In the third stage, after eight points near the search point. are explored and the highest accurate value is assigned as a new search point, corresponding points are divided into four parts and it calculates an accurate value. In the last stage, it is continued until an accurate metric value is the highest compared to the neighborhood point values. If it is not satisfied, it is repeated from the second stage with the input level value. Experimental results using normal and defect bearings show that the proposed deep search algorithm outperforms the conventional algorithms in terms of performance and search time.

Driving Behaivor Optimization Using Genetic Algorithm and Analysis of Traffic Safety for Non-Autonomous Vehicles by Autonomous Vehicle Penetration Rate (유전알고리즘을 이용한 주행행태 최적화 및 자율주행차 도입률별 일반자동차 교통류 안전성 분석)

  • Somyoung Shin;Shinhyoung Park;Jiho Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.30-42
    • /
    • 2023
  • Various studies have been conducted using microtraffic simulation (VISSIM) to analyze the safety of traffic flow when introducing autonomous vehicles. However, no studies have analyzed traffic safety in mixed traffic while considering the driving behavior of general vehicles as a parameter in VISSIM. Therefore, the aim of this study was to optimize the input variables of VISSIM for non-autonomous vehicles through genetic algorithms to obtain realistic behavior. A traffic safety analysis was then performed according to the penetration rate of autonomous vehicles. In a 640 meter section of US highway I-101, the number of conflicts was analyzed when the trailing vehicle was a non-autonomous vehicle. The total number of conflicts increased until the proportion of autonomous vehicles exceeded 20%, and the number of conflicts decreased continuously after exceeding 20%. The number of conflicts between non-autonomous vehicles and autonomous vehicles increased with proportions of autonomous vehicles of up to 60%. However, there was a limitation in that the driving behavior of autonomous vehicles was based on the results of the literature and did not represent actual driving behavior. Therefore, for a more accurate analysis, future studies should reflect the actual driving behavior of autonomous vehicles.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

A Study on the Optimization Period of Light Buoy Location Patterns Using the Convex Hull Algorithm (볼록 껍질 알고리즘을 이용한 등부표 위치패턴 최적화 기간 연구)

  • Wonjin Choi;Beom-Sik Moon;Chae-Uk Song;Young-Jin Kim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.164-170
    • /
    • 2024
  • The light buoy, a floating structure at sea, is prone to drifting due to external factors such as oceanic weather. This makes it imperative to monitor for any loss or displacement of buoys. In order to address this issue, the Ministry of Oceans and Fisheries aims to issue alerts for buoy displacement by analyzing historical buoy position data to detect patterns. However, periodic lifting inspections, which are conducted every two years, disrupt the buoy's location pattern. As a result, new patterns need to be analyzed after each inspection for location monitoring. In this study, buoy position data from various periods were analyzed using convex hull and distance-based clustering algorithms. In addition, the optimal data collection period was identified in order to accurately recognize buoy location patterns. The findings suggest that a nine-week data collection period established stable location patterns, explaining approximately 89.8% of the variance in location data. These results can improve the management of light buoys based on location patterns and aid in the effective monitoring and early detection of buoy displacement.

5G Network Resource Allocation and Traffic Prediction based on DDPG and Federated Learning (DDPG 및 연합학습 기반 5G 네트워크 자원 할당과 트래픽 예측)

  • Seok-Woo Park;Oh-Sung Lee;In-Ho Ra
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.33-48
    • /
    • 2024
  • With the advent of 5G, characterized by Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), efficient network management and service provision are becoming increasingly critical. This paper proposes a novel approach to address key challenges of 5G networks, namely ultra-high speed, ultra-low latency, and ultra-reliability, while dynamically optimizing network slicing and resource allocation using machine learning (ML) and deep learning (DL) techniques. The proposed methodology utilizes prediction models for network traffic and resource allocation, and employs Federated Learning (FL) techniques to simultaneously optimize network bandwidth, latency, and enhance privacy and security. Specifically, this paper extensively covers the implementation methods of various algorithms and models such as Random Forest and LSTM, thereby presenting methodologies for the automation and intelligence of 5G network operations. Finally, the performance enhancement effects achievable by applying ML and DL to 5G networks are validated through performance evaluation and analysis, and solutions for network slicing and resource management optimization are proposed for various industrial applications.