• Title/Summary/Keyword: Optimization Procedure

Search Result 1,165, Processing Time 0.02 seconds

A Framework for Creating Inter-Industry Service Models in the Convergence Era (융합 서비스 모델 개발 방법론 및 체계 연구)

  • Kwon, Hyeog-In;Ryu, Gui-Jin;Joo, Hi-Yeob;Kim, Man-Jin
    • Asia pacific journal of information systems
    • /
    • v.21 no.1
    • /
    • pp.81-101
    • /
    • 2011
  • In today's rapidly changing and increasingly competitive business environment, new product development in tune with market trends in a timely manner has been a matter of the utmost concern for all enterprises. Indeed, developing a sustainable new business has been a top priority for not only business enterprises, but also for the government policy makers accountable for the health of Its national economy as well as for decision makers in what type of organizations. Further, for a soft landing of new businesses, building a government-initiated industry base has been claimed to be necessary as a way to effectively boost corporate activities. However, the existing methodology in new service and new product development is not suitable for nurturing industry, because it is mainly focused on the research and development of corporate business activities instead of new product development. The approach for developing new business is based on 'innovation' and 'convergence.' Yet, the convergence among technologies, supplies, businesses and industries is believed to be more effective than innovation alone as a way to gain momentum. Therefore, it has become more important than ever to study a new methodology based on convergence in industrial quality new product development (NPD) and new service development (NDS). In this research, therefore, we reviewed any restrictions in the existing new product and new service development methodology and the existing business model development methodology. In doing so, we conducted industry standard collaboration analysis on a new service model development methodology in the private sector and the public sector. This approach is fundamentally different from the existing one in that ours focuses on new business development under private management. The suggested framework can be categorized into industry level and service level. First, in the industry level, we define new business opportunities In occurrence of convergence between businesses. For this, we analyze the existing industry at the industry level to identify the opportunities in a market and its business attractiveness, based on which the convergence industry is formulated. Also, through the analysis of environment and market opportunity at the industry level. we can trace how different industries are lined to one another so as to extend the result of the study to develop better insights into industry expansion and new industry emergence. After then, in the service level, we elicit the service for the defined new business, which is composed of private service and supporting service for nurturing industry. Private service includes 3steps: plan-design-do; supporting service for nurturing industry has 4 steps: selection-make environment- business preparation-do and see. The existing methodology focuses on mainly securing business competitiveness, building a business model for success, and offering new services based on the core competence of companies. This suggested methodology, on other hand, suggests the necessity of service development, when new business opportunities arise, in relation to the opportunity analysis of supporting service based on the clear understanding of new business supporting infrastructure optimization. Meanwhile, we have performed case studies on the printing and publishing field with the restrict procedure and development system to assure the feasibility and practical application. Even though the printing and publishing industry is considered a typical knowledge convergence industry, it is also known as a low-demand and low-value industry in Korea. For this reason, we apply the new methodology and suggest the direction and the possibility of how the printing and publishing industry can be transformed as a core dynamic force for new growth. Then, we suggest the base composition service for industry promotion(public) and business opportunities for private's profitability(private).

Dynamic Characteristic Analysis Procedure of Helicopter-mounted Electronic Equipment (헬기 탑재용 전자장비의 동특성 분석 절차)

  • Lee, Jong-Hak;Kwon, Byunghyun;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.759-769
    • /
    • 2013
  • Electronic equipment has been applied to virtually every area associated with commercial, industrial, and military applications. Specifically, electronics have been incorporated into avionics components installed in aircraft. This equipment is exposed to dynamic loads such as vibration, shock, and acceleration. Especially, avionics components installed in a helicopter are subjected to simultaneous sine and random base excitations. These are denoted as sine on random vibrations according to MIL-STD-810F, Method 514.5. In the past, isolators have been applied to avionics components to reduce vibration and shock. However, an isolator applied to an avionics component installed in a helicopter can amplify the vibration magnitude, and damage the chassis, circuit card assembly, and the isolator itself via resonance at low-frequency sinusoidal vibrations. The objective of this study is to investigate the dynamic characteristics of an avionics component installed in a helicopter and the structural dynamic modification of its tray plate without an isolator using both a finite element analysis and experiments. The structure is optimized by dynamic loads that are selected by comparing the vibration, shock, and acceleration loads using vibration and shock response spectra. A finite element model(FEM) was constructed using a simplified geometry and valid element types that reflect the dynamic characteristics. The FEM was verified by an experimental modal analysis. Design parameters were extracted and selected to modify the structural dynamics using topology optimization, and design of experiments(DOE). A prototype of a modified model was constructed and its feasibility was evaluated using an FEM and a performance test.

Radiotherapy for Early Glottic Carinoma (조기 성문암 환자에서의 방사선치료)

  • Kim, Won-Taek;Nam, Ji-Ho;Kyuon, Byung-Hyun;Wang, Su-Gun;Kim, Dong-Won
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.295-302
    • /
    • 2002
  • Purpose : The Purpose of this study was to establish general guidelines for the treatment of patients with early glottic carcinoma (T1-2N0M0), by assessing the role of primary radiotherapy and by analyzing the tumor-related and treatment-related factors that have an influence on the treatment results. Materials and Methods : This retrospective study was composed of 80 patients who suffered from early glottic carcinoma and were treated by primary radiotherapy at Pusan National University Hospital, between August 1987 and December 1996. The distribution of patients according to T-stage was 66 for stage T1 and 14 for stage T2. All of the patients were treated with conventional radical radiotherapy using a 6MV photon beams, a total tumor dose of $60\~75.6\;Gy$ (median 68.4 Gy), administered in 5 weekly fractions of $1.8\~2.0\;Gy$. The overall radiation treatment time was from 40 to 87 days, median 51 days. All patients were followed up for at least 3 years. Univariate and multivariate analysis was done to identify the prognostic factors affecting the treatment results. Results : The five-years survival rate was $89.2\%$ for all patients, $90.2\%$ for T1 and $82.5\%$ for T2. The local control rate was $81.3\%$ for all patients, $83.3\%$ for T1 and $71.4\%$ for T2. However, when salvage operations were taken into account, the ultimate local control rate was $91.3\%,\;T1\;94.5\%,\;T2\;79.4\%$, reprosenting an increase of $8\~12\%$ in the local control rate. The voice preservation rate was $89.2\%,\;T1\;94.7\%,\;T2\;81.3\%$. Fifteen patients suffered a relapse after radiotherapy, among whom 12 patients underwent salvage surgery. We included T-stage, tumor location, total radiation dose, fraction size, field size and overall radiation treatment time as potential prognostic factors. T-stage and overall treatment time were found to be statistically significant in the univariate analysis, but in the multivariate analysis, only the over-all treatment time was found to be significant. Conclusion : The high cure and voice preservation rates obtained when using a procedure, comprising a combination of radical radiotherapy and salvage surgery, may make this the treatment of choice for patients with early glottic carcinoma. However, the prognostic factors affecting the treatment results must be kept in mind, and more accurate treatment planning and further optimization of the radiation dose are necessary.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.