Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.
기존의 공정방식에 비해 효율성이나 환경적 면에서 많은 장점을 가진 플라즈마 공정은 반도체 제작에서 널리 사용되고 있다. Plasma Sheath란 플라즈마 bulk와 그 것을 둘러싸고 있는 챔버 벽면과 전극 사이에서 관찰되는 어두운 영역으로 양이온과 전자의 이동속도 차이로 인해 발생한다. Plasma Sheath Monitoring Sensor (PSMS)는 플라즈마와 전극 사이의 전압(Voltage) 차이와 전극에 걸리는 RF power 등을 실시간으로 측정하는 센서로서 플라즈마 챔버 내에서 플라즈마의 상태와 매우 상관도가 높을 것으로 기대된다. 본 연구에서는 PSMS 데이터를 활용하여 플라즈마 챔버 내의 질소이온의 상태를 예측하는 모형을 딥러닝 기계학습 기법을 이용하여 구축하였다. 연구에 사용된 데이터는 파워와 압력을 달리 셋팅한 실험에서 측정된 PSMS 데이터를 학습데이터로 활용하고 플라즈마 bulk와 Si substrate에서 측정된 질소 이온의 비율, 플럭스, 밀도를 레이블로 활용하였다. 본 연구의 결과는 향후 플라즈마 공정의 최적화 및 실시간 정밀제어를 위한 인공지능 기술의 기초가 될 것으로 기대된다.
본 연구에서는 대규모 지반굴착 조건에서 흙막이 벽체로 적용된 벽강관말뚝의 탄소성보 해석, 유한요소 해석 및 최적화 설계 등의 결과를 제시하였다. 본 연구를 통해 고강도 내해수강 벽강관의 경우 부식에도 유리하고 허용응력이 커 구조적으로 우수하여 흙막이 벽체로써 활용성이 높고, C-Y형 이음부의 경우 기존 P-P형 대비 인장강도와 강성이 크게 개선되었음을 알 수 있었다. 또한, 시공 중 벽체 누수나 결함이 발생하더라도 용접, 덧댐 시공 등으로 확실한 보수가 가능한 장점이 있는 것으로 조사되었다. 벽강관 연속벽의 경우 CIP나 Slurry wall 대비 변위 순응 구조임과 동시에 동일 수평변위에 대하여 허용 휨응력이 매우 커 대심도 흙막이 측면에서 가장 우수한 것으로 평가되었다. 대규모 편토압 조건에서의 지반굴착임을 고려하여 탄소성보해석 및 유한요소 해석을 실시하고, 그 결과를 상호 비교한 결과, 굴착 시 전체적인 거동, 벽체의 변위나 부재력 등 각 항목별 발생 최대값에 대해서도 두 방법간에는 정량적 수치가 유사한 것으로 나타나 추후 설계 시 두 해석방법 모두 적용가능한 것으로 나타났다. 마지막으로, 동일 직경에서 가장 두꺼운 두께의 중공형보다는 가장 얇은 두께에 콘크리트로 속채움하는 방법, 그리고 변위와 부재력의 급격한 변화가 없는 깊이 즉, 정상성 검토를 통한 근입길이 결정 시 경제적인 설계가 가능함을 알 수 있었다.
영상 블러 제거(deblurring)는 피사체의 움직임, 카메라의 흔들림, 초점의 흐림 등으로 인해 촬영 도중 발생한 영상 블러(blur)를 제거하는 것을 목표로 한다. 최근 스마트폰이 보급되며 휴대용 디지털카메라를 들고 다니는 것이 일상인 시대가 오면서 영상 블러 제거 기술은 그 필요성을 점점 더해가고 있다. 기존의 영상 블러 제거 기술들은 전통적인 최적화 기법을 활용하여 연구되어 오다가 최근에는 딥러닝이 주목받으며 합성곱 신경망 기반의 블러 제거 방법들이 활발하게 제안되고 있다. 하지만 많은 방법들이 성능에 먼저 초점을 맞추어 개발되어 알고리즘의 속도로 인하여 현실에서 실시간 활용이 어렵다는 문제점을 안고 있다. 이를 해결하고자 본 논문에서는여러 신경망 설계 기법을 활용하여 HD 영상에서도 30 FPS 이상의 실시간 구동이 가능한 딥러닝 기반 블러 제거 알고리즘을 설계하여 이를 제안한다. 또한 학습 및 추론 과정을 개선하여 속도에 별다른 영향 없이 신경망의 성능을 높이고 동시에 성능에 별다른 영향없이 신경망의 속도를 높였다. 이를 통해 최종적으로 1280×720 해상도에서 초당 33.74장의 프레임을 처리하며 실시간 동작이 가능함을 보여주었고 GoPro 데이터 세트를 기준으로 PSNR 29.79, SSIM 0.9287의 속도 대비 우수한 성능을 보여주었다.
지도 학습 기반의 신경 망을 활용한 공학적 자료의 분석은 화학공학 공정 최적화, 미세 먼지 농도 추정, 열역학적 상평형 예측, 이동 현상 계의 물성 예측 등 다양한 분야에서 활용되고 있다. 신경 망의 지도 학습은 학습 자료를 요구하며, 주어진 학습 자료의 구성에 따라 학습 성능이 영향을 받는다. 빈번히 관찰되는 공학적 자료 중에는 DNA의 길이, 분석 물질의 농도 등과 같이 로그 간격으로 주어지는 자료들이 존재한다. 본 연구에서는 넓은 범위에 분포된 로그 간격의 학습 자료를 기계 학습으로 처리하는 경우, 사용 가능한 손실 함수들의 학습 성능을 정량적으로 평가하였으며, 적합한 학습 자료 구성 방식을 연구하였다. 이를 수행하고자, 100×100의 가상 이미지를 활용하여 기계 학습의 회귀 과업을 구성하였다. 4개의 손실 함수들에 대하여 (i) 오차 행렬, (ii) 최대 상대 오차, (iii) 평균 상대 오차로 정량적 평가하여, mape 혹은 msle가 본 연구에서 다룬 과업에 대해 최적의 손실 함수가 됨을 알아내었다. 또한, 학습 자료의 값이 넓은 범위에 걸쳐 분포하는 경우, 학습 자료의 구성을 로그 간격 등을 고려하여 균등 선별하는 방식이 높은 학습 성능을 보임을 밝혀내었다. 본 연구에서 다룬 회귀 과업은 DNA의 길이 예측, 생체 유래 분자 분석, 콜로이드 용액의 농도 추정 등의 공학적 과업에 적용 가능하며, 본 결과를 활용하여 기계 학습의 성능과 학습 효율의 증대를 기대할 수 있을 것이다.
가상 시뮬레이션을 이용한 의류 디자인 개발에서는 가상과 실제의 차이가 최소화되어야 한다. 가상 의상과 실제 의상의 유사성을 높이는 데에 가장 기본이 되는 작업은 의상 제작에 사용될 옷감의 물성을 최대한 유사하게 표현할 수 있는 시뮬레이션 파라미터를 찾는 것이다. 시뮬레이션 파라미터 최적화 절차에는 전문가의 수작업으로 이루어지는 튜닝 과정이 포함되는데, 이 작업은 높은 전문성과 많은 시간이 요구된다. 특히 조정된 시뮬레이션 파라미터를 적용한 결과를 다시 확인하기 위해 시뮬레이션을 반복적으로 실행할 때 많은 시간이 소요된다. 최근 이 문제를 해결하기 위해 파라미터 튜닝에 주로 사용되는 드레이프 테스트 시뮬레이션 결과를 빠르게 추정하는 인공신경망 학습 모델이 제안되었다. 하지만 기존 연구에서는 비교적 간단한 선형 강성 모델을 사용하였으며 드레이프 시뮬레이션 전체를 추정하는 대신 일부만 추정하고 나머지는 보간하는 방식을 사용하였다. 실제 의류 디자인 개발 과정에서는 주로 비선형 강성 모델이 적용된 시뮬레이터가 사용되지만, 이에 대한 연구는 아직 부족하다. 본 논문에서는 비선형 강성 모델을 대상으로 드레이프 시뮬레이션 결과를 추정하기 위한 새로운 학습 모델을 제안한다. 본 연구에서 제안된 학습 모델은 시뮬레이션 결과인 고해상도 메시 모델 전체를 추정한다. 제시하는 방법의 성능을 검증하기 위해 세 가지 드레이프 테스트 방식을 대상으로 실험을 진행하여 추정 정확도를 평가한다.
Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.
본 연구에서는 우리나라 실정에 맞는 도로포장의 장기 공용성 추정 및 자산가치 평가를 위한 의사결정지원시스템을 구축하여, 도로 포장의 공용성 평가와 생애주기분석을 통한 예방적 유지보수를 위한 최적 타이밍의 결정 등에 대한 방안을 제시하고자 한다. 또한 현재 일정한 금액의 예산으로 예산수준에 맞게 유지보수의 장소를 선정하는 근시안적인 예산관리시스템의 문제점을 보완하기 위해 도로관리자가 필요한 예산의 수준을 예측할 수 있도록 장기 소요예산 예측시스템 및 경제성원리를 도입하여 최소 비용으로 도로의 공용성을 유지하기 위한 도로포장자산평가시스템의 구축방안을 제시하고자 한다. 도로포장자산평가시스템 활용에 있어서, 적정수준의 포장평가지수를 유지하기 위해 대상구간의 당해년도 필요유지예산을 참고하여 효율적으로 예산을 편성할 경우, 가장 합리적인 도로포장 유지보수 예산을 분석할 수 있었다. 이러한 결과로, 불필요한 예산의 낭비를 미연에 방지할 수 있을 것으로 판단되고, 도로포장의 장기 공용성 추정 및 자산가치 평가를 위한 의사결정 시스템 개발을 통해 최적 유지보수 기준의 제시 및 새로운 도로포장의 공법 도입을 위한 사전 평가 및 타당성 분석에도 응용할 수 있을 것으로 기대된다.
자동 음성 인식(automatic speech recognition, ASR)은 딥러닝 기반 접근 방식으로 혁신되었으며, 그중에서도 자기 지도 학습 방법이 특히 효과적일 수 있음이 입증되고 있다. 본 연구에서는 다국어 ASR 시스템인 OpenAI의 Whisper 모델의 한국어 성능을 향상시키는 것을 목표하여 다국어 음성인식 시스템에서의 비주류 언어의 성능 문제를 개선하고자 한다. Whisper는 대용량 웹 음성 데이터 코퍼스(약 68만 시간)에서 사전 학습되었으며 주요 언어에 대한 강력한 인식 성능을 입증했다. 그러나 훈련 중 주요 언어가 아닌 한국어와 같은 언어를 인식하는 데 어려움을 겪을 수 있다. 우리는 약 1,000시간의 한국어 음성으로 구성된 추가 데이터 세트로 Whisper 모델을 파인튜닝하여 이 문제를 해결한다. 또한 동일한 데이터 세트를 사용하여 전체 훈련된 Transformer 모델을 베이스 라인으로 선정하여 성능을 비교한다. 실험 결과를 통해 Whisper 모델을 파인튜닝하면 문자 오류율(character error rate, CER) 측면에서 한국어 음성 인식 기능이 크게 향상되었음을 확인할 수 있다. 특히 모델 크기가 증가함에 따라 성능이 향상되는 경향을 포착하였다. 그러나 Whisper 모델의 영어 성능은 파인튜닝 후 성능이 저하됨을 확인하여 강력한 다국어 모델을 개발하기 위한 추가 연구의 필요성을 확인할 수 있었다. 추가적으로 우리의 연구는 한국어 음성인식 애플리케이션에 파인튜닝된 Whisper 모델을 활용할 수 있는 가능성을 확인할 수 있다. 향후 연구는 실시간 추론을 위한 다국어 인식과 최적화에 초점을 맞춰 실용적 연구를 이어갈 수 있겠다.
대안 모델링에 대한 관심이 커진 이후 데이터 기반의 기계학습을 이용하여 비선형 화학 공정을 모사하고자 하는 연구가 지속되고 있다. 그러나 기계 학습 모델의 black box 성질로 인하여 모델의 해석 가능성에 한계는 산업 적용에 걸림돌이 되고 있다. 따라서, 모델의 정확도가 보장된 상태에서 해석력을 부여하는 개념인 설명 가능한 인공지능(explainable artificial intelligence, XAI)을 이용하여 화학 공정 분석을 시도하고자 한다. 기존의 화학 공정 민감도 분석이 변수의 민감도 지수를 계산하고 순위를 매기는 데에 그쳤다면, XAI를 이용하여 전역적, 국소적 민감도 분석뿐만 아니라 변수들 간의 상호작용에 대하여 분석하여 데이터로부터 물리적 통찰을 얻어내는 방법론을 제안한다. 사례 연구의 대상공정인 암모니아 합성 공정에 대하여 첫번째 반응기로 향하는 흐름에 대한 예열기(preheater)의 온도, 세 반응기로 향하는 cold-shot의 분배 비율을 공정 변수로 설정하였다. Matlab과 Aspen plus를 연동하여 공정 변수를 바꿔가면서 암모니아의 생산량과 세 반응기의 최고 온도에 대한 데이터를 얻었으며, tree 기반의 모델들을 훈련시켰다. 그리고 성능이 좋은 모델에 대하여 XAI 기법 중 하나인 SHAP 기법을 이용하여 민감도 분석을 수행하였다. 전역적 민감도 분석 결과, 예열기의 온도가 가장 큰 영향을 미쳤으며 국소적 민감도 분석 결과에서 생산성 향상 및 과열 방지를 위한 공정 변수들의 범위를 규정할 수 있었다. 이처럼 화학 공정의 대안 모델을 구축하고 설명 가능한 인공지능을 이용해 민감도 분석을 진행하는 방법론을 통해 공정 최적화에 대한 정량적, 정성적 피드백을 제안하는 데 도움을 줄 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.