• Title/Summary/Keyword: Optimal treatment conditions

Search Result 774, Processing Time 0.05 seconds

Is optimal cutting temperature compound essential embedding solution treatment to cryo-sectioning of brain tissue?

  • Baek, Hye Kyung;Song, Ji Ae;Yi, Sun Shin
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.85-89
    • /
    • 2016
  • We tested a set of conditions for obtaining optimal tissue quality in preparation for histology in samples of mouse brain. C57BL/6J mice were sacrificed and perfused with 4% paraformaldehyde, after which the brains were removed and dehydrated in 30% sucrose solution. The brains were then divided into four groups according to freezing temperature and usage of optimal cutting temperature (OCT) compound. Next, we stained the sectioned brain tissues with Harris hematoxylin and eosin Y and immunohistochemistry was performed for doublecortin. The best quality tissue was obtained at $-25^{\circ}C$ and by not embedding with the OCT compound. When frozen at $-25^{\circ}C$, the embedded tissue was significantly damaged by crystals, while at $-80^{\circ}C$ there were no meaningful differences between qualities of embedded- and non-embedded tissues. Overall, we identified a set of conditions to obtain quality frozen brain sections. Our developed protocol will help resolve matters associated with damage caused to sectioned brain tissue by crystal formation during freezing.

Effect of Pelleting Treatment on Seed Germination in Adenophora triphylla (잔대 종자 펠렛처리가 종자 발아에 미치는 영향)

  • Im, Dong Hyeon;Nam, Joo Hee;Kim, Jong Hyuk;Lee, Min Ju;Rho, Il Rae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Sowing seeds of Adenophora triphylla is known to be difficult owing to their small size and irregular seed shape. Therefore, this study was conducted to develop a seed pelleting technique to save labor during sowing. Methods and Results: To identify the optimal germination temperature for A. triphylla seeds, the temperature range was set from 17℃ to 32℃. Germination surveys were conducted in plastic greenhouse conditions in March, April, and May to determine the appropriate sowing time. The optimal germination temperature for A. triphylla seeds was 29℃ and May was the optimal sowing time in plastic greenhouse conditions. Covering materials for seed pelleting used talc (T), kaolin (K), calcium carbonate (C), and vermiculite (V). The pellet binder used agar (A), pectin, xanthan gum, polyvinyl alcohol (PVA), and sodium alginate (S). The best suited treatment mixture were the best suited in kaolin / calcium carbonate / vermiculite (KCV), talc / calcium carbonate / vermiculite (TCV) mixture treatment for covering material, and sodium alginate (S), agar (A) as pellet binder, respectively. The germination rate was the best in TCV mixed with S. Conclusion: The mixture of TCV (2 : 1 : 3) + 1.5% S (TCVS), was found to be the best pelleting materials for A. triphylla seeds, and seed pelleting can be labor-saving during sowing.

Characterization of Biological Treatment by an Isolated Phenol-Degrading Bacterium (페놀분해세균의 분리 및 생물학적 처리 특성)

  • 송형의;김진욱
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.54-62
    • /
    • 1998
  • 20 bacterial strains capable of growing on phenol minimal medium were isolated from soil and wastewater by the enrichment culture technique, and among them, one isolate which was the best in the cell growth was selected and identified as Bacillus sp. SH3 by its characteristics. Strain SH3 could grow with phenol as the sole carbon source up to 15 mM, but did not grow in minimal medium containing above 20 mM of phenol. The optimal conditions of temperature and initial pH for growth and phenol degradation were 30$^{\circ}$C and 7.5, respectively. This strain could grow on various aromatic compounds such as catechol, protocatechuic acid, gentisic acid, o-, m-, p-cresol, benzoic acid, p-hydroxybenzoic acid, anthranilic acid, phenyl acetate and pentachlorophenol, and the growth-limiting log P value of strain SH3 on organic solvents was 3.1. In batch culture, strain SH3 degraded 97% of 10 mM phenol in 48 hours. In continuous culture under the conditions of 20 mM of influent phenol concentration and 0.050 hr$^{-1}$ of dilution rate, the treatment rate of phenol was 94%.

  • PDF

A study on the forming process and formability improvement of clutch gear for vehicle transmission (자동차 트랜스미션용 클러치 기어의 성형 공법 및 성형성 향상에 관한 연구)

  • Lee K. O.;Kang S. S.;Kim J. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.184-187
    • /
    • 2005
  • Forging process is one of the forming process and is used widely in automobile parts and manufacture industry. Especially the gears like spur gear, helical gear, bevel gear were produced by machine tool, but recently they have been manufactured by forging process. The goal of this study is to study forming process with data obtained by comparison between forward extrusion and upsetting simulation results and formability improvement by various heat treatment conditions. By analysis data of 3D FEM by upsetting and forward extrusion forming, the forming process of clutch gear develops using data based on 3D FEM analysis. Through tensile test using specimens by various heat treatment conditions, the optimal heat treatment condition is obtained by comparison the results of tensile test.

  • PDF

Optimal Post Heat-treatment Conditions for Improving Bonding Strength of Roll-bonded 3-ply Ti/Al/Ti Sheets (롤 본딩된 Ti/Al/Ti 3-ply 다층금속 판재의 접합강도 향상을 위한 최적 후열처리 조건 도출)

  • Kim, M.H.;Bong, H.J.;Kim, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.179-185
    • /
    • 2022
  • The influence of post-roll bonding heat treatment conditions such as temperature and time on the variation in the diffusion layer, generated at the bonding interface and the subsequent mechanical properties of the roll-bonded Ti grade 1/Al1050/Ti grade 1 sheets, was systematically investigated. The intermetallic compound (IMC) phase generated by post heat treatment conditions adopted in this study was obviously indexed as monolithic TiAl3. Whereas the thickness of IMC layer generated by annealing at 500 ℃ was approximately 100 nm scale, it drastically increased above 1.5 ㎛ when annealed at 600 ℃. Uniaxial tensile and peel tests were then performed to compare mechanical properties. As a result, the bonding strength drastically increased above 7.9 N/mm by annealing at 600 ℃, which implies that proper annealing condition was a prerequisite, to improving interface bonding strength as well as global elongation properties for Ti/Al/Ti 3-ply sheet.

Influence of Magnetite Particles on Coagulation in Wastewater Treatment (자철광을 이용항 폐수처리시 응집효율에 미치는 영향)

  • 이영신
    • Journal of Environmental Health Sciences
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 1991
  • In this study are investigated to the optimal coagulation conditions and magnetite which was used as coagulation-aids. To accomplish this study, analysis of water quality, removing tubidity and SS from wastewater were measured with jar-tester. The results were obtained that waste water requires 10g magnetite, 100mg aluminum sulfate, and pH valuse was 6~9.

  • PDF

Optimal Condition of Operation Parameter for Livestock Wastewater Treatment using Photo-Fenton Process (PHOTO-FENTON 공정을 이용한 축산폐수처리시 운전인자의 최적조건)

  • Park, Jae-Hong;Chang, Soon-Woong;Cho, Il-Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • In this study, photochemical advanced oxidation processes (AOPs) utilizing the Photo Fenton reaction ($Fe^{2+}+H_2O_2+UV$) were investigated in lab-scale experiments for the treatment of livestock wastewater. For the experimets, the livestock wastewater was pretreated by coagulation with $3,000mg/L\;FeCl_3$. The optimal conditions for Photo-Fenton processes were determined: pH was 5, the concentration of ferrous ion (Fe II) was 0.01 M. The concentration of hydrogen peroxide was 0.1 M, and molar ratio ($Fe^{2+}/H_2O_2$) was 0.1. The optimal reaction time was 80 min. Under the optimal condition of Photo-Fenton process, chemical oxygen demand (COD), color and fecal coliform removal efficiencies were about 79, 70, and 99.4%, respectively and sludge production was 7.5 mL from 100 mL of solution.

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(1) - Chemical Precipitation or Biological Treatment - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(1) -화학적 응집 및 생물학적 처리-)

  • Han Myung Ho;Huh Man Woo
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to remove the dyes in dye wastewater by the chemical precipitation or biological treatment which are one of the main pollutants in dye wastewater. In order to remove the disperse dyes effectively in aqueous solution by chemical precipitation process, coagulation and flocculation tests were carried out using several coagulants on various reaction conditions. It was found that the Ferrous sulfate was the most effective coagulant for the removal of disperse dye(DB79), and we could get the best result for the removal of disperse dye(DB56) in the aspects of TOC removal efficiency and sludge yield. When the Ferrous sulfate dosage was 800mg/l, the sludge settling velocity was very fast$(SV_{30}=4\%)$, and the color was effectively removed in the disperse dye(DB79) solution. Although the color removal was ineffective when the Alum was used as a coagulant, the sludge yield decreased in comparison with the Ferrous sulfate or the Ferric sulfate being used in the disperse dye(DB56) solution. In order to decolorize disperse dye(DR17) by using biological treatment process, a strain which has potential ability to degrade disperse dyes was isolated from natural system. The optimal culture conditions of temperature and pH were found to be $40^{\circ}C\;and\;8.5\~9$, respectively. When yeast extract was mixed with polypeptone at the mixing ratio of 1:1 as a nitrogen source, decolorization efficiency was highest$(93\%)$ among the nitrogen sources. The strain screened was excellent to adjust to pH, and it seems to have ability to control pH needed to growth. The optimal culture conditions in concentration of $MgSO_{4.}\cdot7H_2O\;and\;KH_2PO_4$ were $0.1\%(w/v)\;and\;0.2\%(w/v)$, respectively. Strains degrading and decolorizing reactive dyes, RB198 and RR141 which were isolated from water system, are named RBK1 and RRK. And the cell growth characteristics of RBK1 and RRK were investigated. The optimal culture conditions of temperature and pH were found to be 30t' and 7.0, respectively. Optimum nitrogen source was peptone, and it was found that decolorization efficiencies by strains RBK1 and RRK, were $85\%\;and\;62\%$, respectively, with introduction of 4,000mg/l of peptone. In the case of RBK1, color removal efficiencies were very high below 400mg/l. Decolorization efficiency was over $90\%$ at 20hours of culture time. The Color degradation ability of RRK was lower than that of RBK1.

An Empirical Study on the Bursting Properties According to Heat Treatment Condition of the CNG Pressure Vessel (CNG압력용기의 열처리 조건별 파열 특성에 관한 실증적 연구)

  • Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.1-7
    • /
    • 2017
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses is equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. In this study, the bursting test for the pressure vessel depending on the heat treatment conditions of the vessel in which the actual ruptured accident occurred, after the bursting test, the fracture pattern analysis had performed. The mechanical materials properties test using Instrumented Indentation Test had performed to confirm the mechanical properties for each heat treatment cases. Also, the fractography analysis and metallographic analysis had performed to find out the difference of each heat treatment case. By comparing normal vessel with abnormal vessel which have defect of heat treatment conditions in term of the bursting patterns and characteristics of containers using various forensic engineering methods, especially, it is possible to understand how important the heat treatment process is in the high pressure vessel unlike any product.

Laccase Treatment on Polyamide Fabrics (라카제를 이용한 폴리아미드 섬유의 효소 가공)

  • Seo, Hye-Young;Kim, Hye-Rim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1264-1270
    • /
    • 2011
  • This study is to optimize the conditions for the treatment of polyamide fabrics using laccase. The pH, temperature, treatment time, and concentration were varied; their effects were evaluated by measuring the number of primary amide groups by the uptake of an acid dye measured by K/S of dyed polyamide fibers. The hydrophilicity of the fabrics was evaluated in terms of moisture regain and wettability. The effects of the mediator, ABTS, on the laccase activity were also evaluated. The optimal treatment conditions were identified as a pH of 4.5, temperature of $30^{\circ}C$, treatment time of 6 hours, and concentration of 10% of the weight of the fabric (o.w.f.). ABTS facilitated the activity of laccase on the polyamide fabrics. Voids and cracks on the surfaces of the laccase-treated polyamide fabrics were responsible for improved wettability. The results proved that laccase treatment improved the hydrophilicity of polyamide fibers without decreasing their strength.