• Title/Summary/Keyword: Optimal temperature

Search Result 4,571, Processing Time 0.029 seconds

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

Optimal Design of a Heat Exchanger with Vortex Generator (와류발생기가 부착된 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

Effect of high temperature on mineral uptake, Soluble carbohydrates partitioning and cucumber yield

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Ha, Sangkeun;Sonn, Yeonkyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.291-298
    • /
    • 2014
  • Plastic film houses are directly associated with increases in plant growth and yield of vegetable crops through a year round cultivation, however, at the same time temperature stresses are one of fates which are difficult to avoid during crop growth. The objective of this study was to examine the translocation and distribution of minerals (N, P, K) and carbohydrates as well as seasonal fluctuation of mineral uptake and carbohydrate production in cucumber plant grown under moderately high temperature. The temperature treatments consisted of 2-layers film houses (optimal temp.) and 3-layers (high temp.). Shoot growth of cucumber plants were linearly increased until 14 weeks after transplanting (WAT) without any significant difference between both temperatures, and the slowdown was observed from 16 WAT. The level of soluble sugar and starch was slightly greater in optimal temperature compared to the high. Cumulative accumulation of soluble sugar was significantly different before and after 12 WAT in both treatments, whereas starch level represented a constant increase. Monthly production of soluble sugar reached the peak between 12 to 16 WAT, and starch peaked between 4 to 8 WAT and 12 to 16 WAT. Total uptake of N, P and K in optimal and high temperature conditions was $18.4g\;plant^{-1}$ and 17.6 for N, 4.7 and 5.1 for P, and 37.7 and 36.2 for K, respectively, and the pattern of monthly N uptake between optimal and high temperatures was greater in early growth stage, whereas was greater in mid growth stage in both P and K. Thus, this study suggests that moderately high temperature influences much greater to photosynthesis and carbohydrate production than plant biomass and mineral uptake. On the basis of the present result, it is required to indentify analysis of respiration rates from plant and soil by constantly increasing temperature conditions and field studies where elevated temperatures are monitored and manipulated.

Real Time Near Optimal Control Application Strategy of Central Cooling System (중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob;Joo, Yong-Duk;Kim, Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.7
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

Temperature Setpoint Algorithm for the Cooling System of a Tilting Train Main Transformer (틸팅열차 주변압기 냉각시스템의 온도설정알고리즘)

  • Han, Do-Young;Noh, Hee-Jeon;Won, Jae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.387-392
    • /
    • 2008
  • In order to improve the efficiency of the main transformer in a tilting train, the optimal operation of a cooling system is necessary. For the development of the optimal control algorithm of a cooling system, the mathematical model of a main transformer cooling system was developed. This includes the dynamic model of a main transformer, an oil pump, an oil cooler and a blower. The system algorithm of a cooling system, which consists of the temperature setpoint algorithm and the temperature control algorithm, was developed. Optimal oil temperatures of the inlet and the outlet of the main transformer were obtained by considering the total electric power consumption of the system. The oil inlet temperature was controlled by the blower and the oil outlet temperature was controlled by the oil pump. A simulation program was developed by using the mathematical model and the system algorithm. Simulation results showed that the system algorithm developed from this study may be effectively used to control the main transformer cooling system in a tilting train.

  • PDF

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (미성형 방지를 위한 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.33-37
    • /
    • 2002
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

A Study on Intelligent Generator of Optimal Process Conditions to Avoid Short Shot (사출성형용 지능형 미성형 방지 최적조건 생성 시스템 연구)

  • 강성남;허용정;조현찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.402-405
    • /
    • 2001
  • A short shot is a molded part that is incomplete because insufficient material was injected into the mold. Remedial actions to control the process conditions can be taken by the injection molding experts based on their knowledge and experience. However, it is very difficult for the non-experts to avoid short shot by finding the proper process conditions such as mold temperature, melt temperature and filling time. In this paper, an intelligent generator of the optimal process conditions based upon fuzzy logic algorithm is proposed so that trial and error can be minimized and the non-experts as well as the experts can also find the optimal process conditions.

  • PDF

Temperature Control of Electric Furnaces using Adaptive Time Optimal Control (적응최적시간제어를 사용한 전기로의 온도제어)

  • Jeon, Bong-Keun;Song, Chang-Seop;Keum, Young-Tag
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Optimal Positioning of Heating Lines in a Compression Molding Die Using the Boundary Element Method (경계요소법을 이용한 압축성형다이 가열선의 최적위치 설계)

  • 이부윤;조종래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1478-1485
    • /
    • 1993
  • A shape optimization problem is formulated to determine the optimal position of heating lines in a compression molding die. The objective of the problem is that the cavity surface would be maintained by a prescribed uniform temperature. A boundary integral equation for the sensitivity of the temperature in terms of hole position is derived using the method of shape design sensitivity analysis. The boundary element method is employed to analyze the temperature and sensitivity field of the die. The sensitivity calculation algorithm is incorporated in an optimization routine. To demonstrate a numerical implementation, an example problem arising in thermal design of a compression molding die is dealt with, showing that the number of heating lines chosen for the die strongly affects the ultimate uniformity of the cavity surface temperature.