• Title/Summary/Keyword: Optimal supervisory control

Search Result 17, Processing Time 0.026 seconds

Optimal supervisory control (최적 제어를 위한 Supervisory control)

  • 박홍성;김면집;노갑선;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.498-503
    • /
    • 1991
  • This paper presents a framework of a optimal supervisory controller, which consists of decision rules and the supervisory controller proposed by Ramadge and Wonham. From the presented framwork we obtain optimal control patterns minimizing the given cost functions. The properties of the presented optimal supervisory controller are discussed. Two examples are given to illustrate a designing method of the optimal supervisory controller.

  • PDF

An overview of decentralized optimal fault-tolerant supervisory control systems

  • Cho, K.H.;Lim, J.T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.358-361
    • /
    • 1996
  • In this paper, we discuss decentralized optimal fault tolerant supervisory control issues on the basis of failure analysis and diagnosis from the angle of discrete event dynamic system. We address the detectability and the observability problems, and develope fault tolerant supervisory control system upon the failure analysis and diagnosis schemes. A complete min-cut is introduced and the procedure for finding the achievable or nonachievable layered optimal legal sublanguages is suggested for a preferential option among the reachable states in the controlled plant. A layered optimal supervisory control framework is proposed upon these. We extend the concept of decentralized supervisory control by considering the problem of combination of decentralized with centralized control in case pure decentralized control happens to be inadequate. We introduce the concept of locally controllable pair and present a hybrid decentralized supervisory control framework. Finally, we propose the analytical framework for a decentralized optimal fault tolerant supervisory control systems.

  • PDF

Optimal Control for Central Cooling Systems (중앙냉방시스템의 최적제어에 관한 연구)

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.354-362
    • /
    • 2000
  • Optimal supervisory control strategy for the set points of controlled variables in the central cooling system has been studied by computer simulation. A quadratic linear regression equation for predicting the total cooling system power in terms of the controlled and uncontrolled variables was developed using simulated data collected under different values of controlled and uncontrolled variables. The optimal set temperatures such as supply air temperature, chilled water temperature, and condenser water temperature, are determined such that energy consumption is minimized as uncontrolled variables, load, ambient wet bulb temperature, and sensible heat ratio, are changed. The chilled water loop pump and cooling tower fan speeds are controlled by the PID controller such that the supply air and condenser water set temperatures reach the set points designated by the optimal supervisory controller. The influences of the controlled variables on the total system and component power consumption was determined. It is possible to minimize total energy consumption by selecting the optimal set temperatures through the trade-off among the component powers. The total system power is minimized at lower supply, higher chilled water, and lower condenser water set temperature conditions.

  • PDF

Development of Driving Control Algorithm for Vehicle Maneuverability Performance and Lateral Stability of 4WD Electric Vehicle (4WD 전기 차량의 선회 성능 및 횡방향 안정성 향상을 위한 주행 제어 알고리즘 개발)

  • Seo, Jongsang;Yi, Kyongsu;Kang, Juyong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • This paper describes development of 4 Wheel Drive (4WD) Electric Vehicle (EV) based driving control algorithm for severe driving situation such as icy road or disturbance. The proposed control algorithm consists three parts : a supervisory controller, an upper-level controller and optimal torque vectoring controller. The supervisory controller determines desired dynamics with cornering stiffness estimator using recursive least square. The upper-level controller determines longitudinal force and yaw moment using sliding mode control. The yaw moment, particularly, is calculated by integration of a side-slip angle and yaw rate for the performance and robustness benefits. The optimal torque vectoring controller determines the optimal torques each wheel using control allocation method. The numerical simulation studies have been conducted to evaluated the proposed driving control algorithm. It has been shown from simulation studies that vehicle maneuverability and lateral stability performance can be significantly improved by the proposed driving controller in severe driving situations.

Optimal supervisory control for multiple-modelled discrete event systems

  • Lee, Moon-Sang;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.73.5-73
    • /
    • 2001
  • In this paper, we present a procedure to design the robust optimal supervisor which has the minimal cost in the sense of average for a given multiple-modelled discrete event system DES. In order to design the robust optimal supervisor, we extend the optimal supervisor design algorithm for a deterministic DES to the case of multiple-modelled DESs. In addition, using the proposed algorithm with modified costs of events and penalities of states, we can show whether a robust supervisor for a given multiple-modelled DES exists and design the minimally restricted robust supervisor.

  • PDF

Supervisory control of reheating furnace

  • Kim, Young-Il;Min, Kwang-Gi;Nam, In-Sik;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.538-541
    • /
    • 1995
  • In steel works, reheating furnace is an essential part of a rod mill plant and it treats various types of billets continuously. Although getting an optimal setting for a single billet is simple, control setting for whole groups of billets is a difficult task. In this work, we studied a detail mathematical model and optimal control setting of reheating furnace. As the mathematical model of each billet is a partial differential equation, on-line control is almost impossible for the whole billets charged into the furnace. Therefore, we tried to provide a guideline for optimal setting value of the roof(index) temperature for the target billets which account for about 20% of the charged billets.

  • PDF

Modeling Mobility Agents in Supervisory and Controlling Systems Based on Nets within Nets (ICCAS2005)

  • Xiaohui, Hu;Jianwu, Dang;Xingshe, Zhou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.433-437
    • /
    • 2005
  • The goal of our research is to develop a formal modeling methodology for supervisory and controlling systems that have artificially intelligent features. This approach is agent-based and central to the development of the model of mobility agent considering reactivity for real-time purpose and deliberation for optimal realization and safe-fail problems for critical systems like Intelligent Transportation Systems by high-level Petri net. By using nets within nets we investigate the concurrency of the system and the agent in one model without losing the needed abstraction, and synchronous channels are introduced to denote the coordination and communication. Finally an example is demonstrated.

  • PDF

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF

A study on the optimal stratege of SCADA (Supervisory Control And Data Acquisition) System in electric railway power system (전기철도 전력 원방 감시제어 시스템 최적 구성방안 연구)

  • Byun Jae-Young;Chang Sang-Hoon;Kim wang-Gon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.990-996
    • /
    • 2005
  • This paper is countermeasure against the problem point it will be able to occur with infiltration of the hardware and software. And, we proposed the optimum integrated of system construction plan for the SCADA system function set and a system design.

  • PDF

DEVELOPMENT OF EMEVATOR GROUP SUPERVISIRY SYSTEM WITH FUZZY MADE

  • Park, Hee-Chul;Lee, See-Hun;Choi, Don;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.390-394
    • /
    • 1994
  • A elevator group supervisory system is designed to perform efficient operation of multiple elevators, and its basic function is to assign an appropriate elevator to a given hall-cell. In this paper, in order to improve elevator group control performance, we propose a new dispatching system which includes fuzzy multi-attribute decision making(MADM). In most cases, the purpose of group control is to maximize control goals as much as possible. Unfortunately, the decision of optimal elevator to a given hall cell is made with very uncertain information of the system, and some of control goals are related each other. The uncertainty is mainly resulted from car calls generated by serving hall calls. A fuzzy MADM algorithm is proposed to deal with these problems to improve system performance.

  • PDF