• Title/Summary/Keyword: Optimal replacement

Search Result 384, Processing Time 0.024 seconds

Development of Cellulosic Fiber Filter Using Replacement Liquid in Water-Swollen Fiber with Non-Polar Solvent (Non-Polar 물질 수분치환에 의한 종이필터 개발)

  • Kim, Kwang Soo;Ahn, Kwang Ho;Park, Jae Ro;Kim, Hyun Jung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.10
    • /
    • pp.743-748
    • /
    • 2013
  • The purposes of this study are to prepare Hanji fiber-filter sheets using replacement liquid in water-swollen fiber with non-polar solvent such as ethanol, methanol and pentane. The experiments were studied on the selection of optimal non-polar solvent and the optimal drying method for wetted fiber and then were to know physicochemical characteristics of prepared Hanji fiber-filter sheet. The Ethanol as liquid changer in water-swollen fiber was excellent solvent and the optimal drying method for them was freeze drying served with vacuum pump. The bulk density and porosity of prepared fiber sheet from freeze dryer were 0.11-0.13 g/mL, half of natural dried fiber sheet, and 90%, respectively. The results of SEM observation for the fiber sheet prepared with natural drying or heating drying were shown very close structure of fiber wall in dry state. However, the freeze drying sheet were shown the open structure. So, the head loss of freeze drying sheet was very lower than natural drying and heating drying sheets. From the results of BTEX removal experiments, the sheets dried at water wetted condition was shown more higher efficiency than the fiber sheets dried at solvent wetted condition.

Representative Dissolved Gases indicating Aging of Power Transformers (전력용 변압기 경년열화와 관련된 DGA 대표가스에 관한 연구)

  • Kweon, Dongjin;Kim, Yonghyun;Joo, Byoungsoo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2017
  • The life management technology becomes important as the failure risk of the aged power transformers increases. Asset management technology, therefore, has been developed to evaluate the remaining life and build replacement strategies of power transformers, which enables an optimal investment decisions based on reliability and economic feasibility. The remaining life assessment technology uses data related to such as installation, operation, maintenance, refurbishment, and disposed history of power transformers. The optimal investment decision additionally uses data related to failure and social costs. To develop the asset management technology in power transformers, it is important to find deterioration parameters directly indicating degradation of power transformers. In this study, 110,000 DGA data during the past 35 years have been analyzed in order to find the deterioration parameters related to the degradation of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, $C_2H_6$), TCG CO, and $CO_2$ were analyzed as deterioration parameters. The origin of the gas was discussed in connection with discharge, overheating and insulation aging.

Reliability-based Life Cycle Cost Analysis for Optimal Seismic Upgrading of Bridges

  • Alfredo H-S. Ang;Cho, Hyo-Nam;Lim, Jong-Kwon;An, Joong-San
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • This study is intended to propose a systematic approach for reliability-based assessment of life cycle cost (LCC) effectiveness and economic efficiency for cost-effective seismic upgrading of existing bridges. The LCC function is expressed as the sum of the upgrading cost and all the discounted life cycle damage costs, which is formulated as a function of the Park-Ang damage index and structural damage probability. The damage costs are expressed in terms of direct damage costs such as repair/replacement costs, human losses and property damage costs, and indirect damage costs such as road user costs and indirect regional economic losses. For dealing with a variety of uncertainties associated with earthquake loads and capacities, a simulation-based reliability approach is used. The SMART-DRAIN-2DX, which is a modified version of the well-known DRAIN-2DX, is extended by incor-porating LCC analysis based on the LCC function developed in the study. Economic efficiencies for optimal seismic upgradings of the continuous PC segmental bridges are assessed using the proposed LCC functions and benefit-cost ratio.

  • PDF

Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system (자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구)

  • kim, Jinwon;Kim, Donghyun;Lee, Younggun;Lee, Sewan;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

Evaluate of high solid manure characteristics and theoretical methane potential in domestic (국내 고상가축분뇨 특성 및 이론적 메탄 잠재성에 대한 평가)

  • Choi, Yongjun;Lee, Sangrak
    • Journal of Animal Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2016
  • This study was conducted to establish a database of high solid manure(HSM) in domestic. Theoretical methane potential and HSM characteristics was evaluated using breef and dairy manure (n=156). Total solids and Volatile solids of HSM increased depending on time flow, the results showed $20.4{\pm}3.2$ and $17.4{\pm}2.8%$. respectively. C/N ratio of breef HSM was higher than dairy HSM C/N ratio. In theoretical methane potential, the result of breef and dairy HSM was showed $505.2{\pm}25.3$ and $493.5{\pm}20.2$, respectively. Nitrogen content of total HSM increased depending on time flow, the result of breef and dairy nitrogen content was showed $1.9{\pm}0.3$ and $2.8{\pm}0.2$, respectively. Carbon content of total HSM showed approximately 10% reduction. The optimal time of bed replacement was indicated between 29 amd 31 days based on the optimal C/N ratio. Therefore, this study was considered that it has high utilization for livestock manure recycling and basis of relevant research.

An Experimental Study on the High Performance Optimal Discharge System of a Rotary Compressor for an Air Conditioner using alternative Refrigerant R410a (대체냉매 공기조화기용 로터리 압축기의 성능향상을 위한 최적 토출계에 관한 실험적 연구)

  • Youn, Young;Chung, Jin-Taek;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 2001
  • R410a which is one of HFC refrigerants is being considered to be a promising replacement for R22 widely used in domestic air conditioners. The rolling piston type rotary compressors for R410a have lower energy efficiency than those for R22 because of the high pressure difference between a suction chamber and a discharge chamber in the compression mechanism. in addition, the re-expansion gas loss of the rotary compressor for R410a which occurs a ta clearance volume in a discharge port becomes larger than that for R22 due to high density of R410a refrigerant. Therefore, Pressure-Volume analyses for various design parameters of a discharge system were carried out to improve efficiency of a R410a rotary compressor. The results such as performance dta, over-compression loss, and re-expansion loss were acquired by P-V analyses and analyzed quantitatively. As a conclusion, the optimal specifications of several design parameters of a discharge system were obtained by analyzing P-V diagrams.

  • PDF

Chloride Binding Properties of Portland Cement Binder Incorporating CaAl2O4-CaAl4O7 (CaAl2O4-CaAl4O7 혼입 포틀랜드 시멘트 결합재의 염소이온 고정 특성)

  • Han, Jae-Doh;Lee, Yun-Su;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study conducted to understand effects of CA (CaAl2O4) and CA2 (CaAl4O7) ratio on chloride binding ability and compressive strength and pore structure of cement mortar incorporating mixture of CA and CA2. The Portland cement based specimens were mixed with the clinkers CA and CA2, and these calcium aluminate clinker mixture were replaced 0, 5, 10% by weight of cement. After all the test specimens were cured for 28 days under water curing, they were immersed in the distilled water and NaCl solution. As a result, 28 days compressive strength of all specimens was similar, and As the replacement ratio of calcium aluminate clinker in the specimen increased, Friedel's salt production tended to increase. However, it was dependent on the amount of Al2O3 in the level of 5% replacement and CA ratio in the level of 10% replacement. Through equilibrium isotherm result, it was also indicated that as replacement ratio of calcium aluminate clinker in cement matrix increased, chloride binding capacity was improved, and chloride penetration was suppressed. In this study, the specimen replaced with 10% of the calcium aluminate clinker mixture (CA 39%, CA2 60%) was remarkable to control chloride attack. We figured out necessity to understand optimal CA/CA2 ratio to effectively apply CA2 as a sustainable building material by improving the chloride binding ability in Portland cement based system.

A Study on Disposal Diagnosis Algorithm of PV Modules Considering Performance Degradation Rate (태양광모듈의 성능저하율을 고려한 폐기진단 알고리즘에 관한 연구)

  • Park, Ji-Hyun;Lee, Hu-Dong;Tae, Dong-Hyun;Ferreira, Marito;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.493-502
    • /
    • 2019
  • Recently, the installation of renewable energy including PV systems in distribution systems has increased energetically to cope with climate change and energy shortages according to the government's policy of renewable energy 3020. On the other hand, the electrical performance and lifespan of PV modules installed outdoors can be decreased considerably due to a range of deterioration phenomena depending on the ambient environmental factors. To overcome these problems, replacement of degraded PV modules with new ones is increased before the lifespan guaranteed by the makers of PV modules. Therefore, this paper proposes a disposal diagnosis algorithm to evaluate the time interval of the optimal replacement for PV modules according to performance degradation rate of PV modules. In addition, this study modeled an economic evaluation, which is composed of the cost and benefit of PV systems. From the simulation results based on the proposed modeling and algorithm to consider the performance degradation rate specifically, the replacement approach was found to have the best B/C ratio in 10th year with a 3[%] degradation rate and the disposal diagnosis algorithm of PV modules are useful and practical tools for economic evaluations of the replacement of PV modules.

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Study of Optimal Maintenance Float(M/F) Calculation Method (최적의 정비대체장비(M/F) 산출방안 비교 연구)

  • Lee, Hak-Jae;Jung, Kwang-Kyun;Kim, Jae-Hwang;Lee, Jong-Sin;Lee, Myoung-Jin
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.192-201
    • /
    • 2016
  • Purpose: In this paper, we propose the output model of the optimal inventory requirements of the Maintenance Float (M/F). Weapon systems were modernized and increased costs. Thus, the complexity increases with. Alternatives to achieve the goal of availability of weapon systems and to reduce life-cycle cost are required. Especially, securing spare parts is more effective than adding the amount of equipment or maintenance facilities to achieve the goal of availability and reduce life cycle costs. However, securing spare parts and repair costs are directly related, so exact requirements are needed. Methods: Three kinds of methods (Calculation method of applying the Poisson distribution, Calculation method of considering the number of CSP, and Calculation method of applying M&S program) that this paper proposed compare the influence of the availability and the amount of spare parts. Result: We calculate the cost of M/F when the operational availability is over than 80% and compare that result. The biggest cost was calculated from the Poisson distribution method. We found that requirements and unit price is the key factor that gives a significant effect. Conclusion: These three kinds of methods can be used as a basis for Maintenance Float calculation. Among them, the calculation method based on CSP is optimal replacement equipment requirements calculation method.