• Title/Summary/Keyword: Optimal power flow

Search Result 545, Processing Time 0.028 seconds

An Optimal bidding strategy using optimal power flow (최적조류계산을 이용한 최적입찰 전략)

  • Kim, Moon-Young;Baek, Young-Sik;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.369-371
    • /
    • 2002
  • In a competitive electricity market, the transactions of the electric power can be accomplished through the bidding which is submitted by suppliers and consumers. It is essential that the optimal decision for the bidding is required to take a dominant position in the competition. Therefore, in this paper we presents bidding variables from bidding curves of suppliers and consumers and proposes the algorithm of an optimal bidding strategy using optimal power flow. Furthermore, the variation of the optimal bidding is investigated through numerical studies.

  • PDF

Fast Mixed-Integer AC Optimal Power Flow Based on the Outer Approximation Method

  • Lee, Sungwoo;Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2187-2195
    • /
    • 2017
  • In order to solve the AC optimal power flow (OPF) problem considering the generators' on/off status, it is necessary to model the problem as mixed-integer nonlinear programming (MINLP). Because the computation time to find the optimal solution to the mixed-integer AC OPF problem increases significantly as the system becomes larger, most of the existing solutions simplify the problem either by deciding the on/off status of generators using a separate unit commitment algorithm or by ignoring the minimum output of the generators. Even though this kind of simplification may make the overall computation time tractable, the results can be significantly erroneous. This paper proposes a novel algorithm for the mixed-integer AC OPF problem, which can provide a near-optimal solution quickly and efficiently. The proposed method is based on a combination of the outer approximation method and the relaxed AC OPF theory. The method is applied to a real-scale power system that has 457 generators and 2132 buses, and the result is compared to the branch-and-bound (B&B) method and the genetic algorithm. The results of the proposed method are almost identical to those of the compared methods, but computation time is significantly shorter.

Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

  • Mahdad, Belkacem;Srairi, K.;Bouktir, T.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.457-466
    • /
    • 2009
  • This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.

Long-term Shunt VAr Planning using Optimal Power Flour (OPF를 이용한 중장기 전력계통 조상설비 계획수립)

  • Ryu, Heon-Su;Bae, Ju-Cheon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.301-303
    • /
    • 2005
  • This paper presents long-term shunt capacitor planning using optimal power flow. OPF allows the planning engineer to find feasible solution with minimal amount of engineering time. We used OPF for Shunt capacitor planning to get an optimal solution. The result of OPF is compared to the analysis by the conventional loadflow method and it is proved that OPF gives more cheaper and better planning solution. With the result, we analyzed the operational perspective for the reactive power supply and demand.

  • PDF

Windows Based Programming for Optimal Power Flow Analysis (윈도우환경을 기반으로 한 최적전력조류 프로그램 팩키지 개발)

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Lee, Jae-Gyu;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.239-242
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SVC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow. In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to 10 machines 39 buses model system.

  • PDF

Optimal and decentralized control of power system frequency (전력계통 주파수의 최적분산제어에 관한 연구)

  • 박영문;이승재;서보혁
    • 전기의세계
    • /
    • v.29 no.10
    • /
    • pp.667-677
    • /
    • 1980
  • A new approach for optimal decentralized load-frequency control in a multi-area interconnected power system is presented, which includes the optimal determination of decentralized load-frequency controller, observer for unmeasurable local states and load disturbances, quadratic estimator for tie-line power flow information transmitted at intervals. The optimal design of the decentralized controller is based on a modified application of the singular perturbation theory, and the decentralized Luenberger obeserver uses techniques of state augmentation for exponential disturbance functions and the representation of tie-line power flow states as non-directly-controlled inputs. The approach presented herein is numerically tested through Elgerd's two-area load-frequency system model, and the results demonstrate remarkable advantages over the conventional ones.

  • PDF

A Study on the Load Frequency Control of Power System Using an Optimal Modulation Controller (최적 변조제어기를 이용한 전력시스템의 부하주파수 제어에 관한 연구)

  • 정형환;허동렬;정문규;주석민;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.299-306
    • /
    • 2002
  • The load frequency control(LFC) of power system is one of important subjects in view of system operation and control. That is, even though the rapid load disturbances are applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow ones of each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation are given, the unstable phenomena of power systems can be often brought out because of the large frequency deviation and the unsuppressible power line one. So, an optimal modulation controller for UC of multi-area power system is designed by a recursive algorithm that determines the state weighting matrix Q of a linear quadratic performance criterion. The optimal modulation controller is based on optimal control and can obtain the exact dynamic response of the UC of multi-area power system in the time domain. The performances of the resultant optimal modulation control, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the UC of multi-area power system in the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbance of stepwise load changes, the superiorities of the proposed optimal modulation controller in robustness and stability were proved.

Windows Program Package Development for Optimal Pourer Flour Analysis (최적전력조류 해석을 위한 원도우프로그램 팩키지 개발)

  • Kim, Gyu-Ho;Lee, Sang-Bong;Lee, Jae-Gyu;Yu, Seok-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.12
    • /
    • pp.584-590
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected Power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SYC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to IEEE 14 buses and 10 machines 39 buses model system.

  • PDF

Fuzzy-Enforced Complementarity Constraints in Nonlinear Interior Point Method-Based Optimization

  • Song, Hwachang
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • This paper presents a fuzzy set method to enforce complementarity constraints (CCs) in a nonlinear interior point method (NIPM)-based optimization. NIPM is a Newton-type approach to nonlinear programming problems, but it adopts log-barrier functions to deal with the obstacle of managing inequality constraints. The fuzzy-enforcement method has been implemented for CCs, which can be incorporated in optimization problems for real-world applications. In this paper, numerical simulations that apply this method to power system optimal power flow problems are included.

Study on Optimal Power Flow Considering Voltage Stability Margin (전압안정도 여유를 고려한 최적조류계산에 관한 연구)

  • Kim, S.;Jeong, M.H.;Lee, B.;Song, K.Y.;NamGoong, J.;Choi, H.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper the concept of voltage stability operating limit in optimal power flow problem is described. A methodology of optimal power flow considering voltage stability margin is proposed based on auxiliary constraint to get a secure dispatch solution. The look-ahead margin is used to shift dispatch solutions to the secure direction in proposed framework. The a1gorithm proposed is successfully tested on IEEE 30-bus system.

  • PDF