• Title/Summary/Keyword: Optimal power flow

Search Result 544, Processing Time 0.031 seconds

A Study on Development of Optimal Power Flow Calculation Algorithm Considering Voltage and Transient Stability (전압 및 과도안정도를 고려한 최적조류계산 알고리즘 개발에 관한 연구)

  • Kim, Yong-Ha;Lee, Buhm;Choi, Sang-Kyu;Cho, Sung-Rin;Jung, Hyun-Sung;Oh, Seok-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.39-42
    • /
    • 2005
  • This paper presents a optimal power flow calculation algorithm considering voltage and transient stability In this method, voltage stability margin and transient stability constraints is incorporated into a optimal power flow calculation formulation to guarantee adequate voltage and transient security levels in power system. The proposed method is applied to IEEE-24 Reliability Test System and the results shows the effectiveness of the method.

  • PDF

Economic Dispatch based on Primal Interior Point Method (Primal Interior Point 법에 의한 경제급전)

  • Jung, Leen-Hark;Cho, Yang-Haeng;Park, Kyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.366-368
    • /
    • 2002
  • This paper presents a technique that can obtain an optimal solution for the Security-Constrained Economic Dispatch (SCED) problems using the Interior Point Method (IPM) while taking into account of the power flow constraints. The SCED equations are formulated by using only the real power flow equations from the optimal power flow. Then an algorithm is presented that can linearize the SCED equations based on the relationships among generation real power outputs, loads, and transmission losses to obtain the optimal solutions by applying the linear programming (LP) technique. Finally, the application of the Primal Interior Point Method (PIPM) for solving the optimization problem based on the proposed linearized objective function is presented. The results are compared with the Simplex Method and the Promising results ard obtained.

  • PDF

The analysis of nodal prices in the optimal power flow including a load model and the congestion of transmission lines (부하모델과 송전선로 혼잡을 고려한 최적조류계산의 모선가격 분석)

  • Kim, Moon-Young;Baek, Young-Sik;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.425-427
    • /
    • 2002
  • In a deregulated power market, a load model considered the characteristics of electric consumers is required and the congestion management of transmission lines should be resolved in a point of economic benefits. It is essential that the optimal power flow algorithm is applied to manage transmission line congestion. Therefore, in this paper, we implement the optimal power flow with object function of social welfare maximization based linear programming and analysis the nodal prices for generations and loads through a numerical study.

  • PDF

Distributed Implementation of Optimal Power Flow (OPF) Based on Auxlliary Problem Principle (Auxiliary Problem Principle 알고리즘에 기초한 최적 조류 계산의 분산 처리 기법에 관한 연구)

  • Hur, Don;Kim, Jin-Ho;Park, Jong-Keun;Kim, Bal-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1000-1002
    • /
    • 1998
  • We present an approach to parallelizing optimal power flow (OPF) that is suitable for distributed implementation and is applicable to very large interconnected power systems. The objective of this paper is to find a set of control parameters with which the Auxiliary Problem Principle (Algorithm - APP) can be best implemented in solving optimal power flow (OPF) Problems. We employed several IEEE Reliability Test Systems to demonstrate the alternative parameter sets.

  • PDF

Marginal Loss Factor using Optimal Power flow in Power Market (최적조류계산을 이용한 한계손실계수의 전력시장 적용)

  • Sin, Dong-Jun;Go, Yong-Jun;Lee, Hyo-Sang;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.379-384
    • /
    • 2002
  • In the competitive electricity market, various pricing methods are developed and practiced in many countries. Among these pricing methods, marginal loss factor(MLF) can be applied to reflect the marginal cost of network losses. For the calculation of MLF, power flow method has been used to calculate system loss deviation. However, this power flow method shows some shortcomings such as necessity of regional reference node, and absence of an ability to consider network constraints like line congestion, voltage limit, and generation output limit. The former defect might affects adversely to the equity of market participants and the latter might generate an inappropriate price signals to customers and generators. To overcome these defects, the utilization of optimal power flow(OPF) is suggested to get the system loss deviation in this paper. 30-bus system is used for the case study to compare the MLF results by the power flow and the OPF method for 24-hour dispatching and pricing, Generator payment and customer charge are compared with these two methods also. The results show that MLF by OPF reflects the power system condition more faithfully than that of by the conventional power flow method

A Study of Reducing Congestion Cost using Decoupled Optimal Power Flow (분할 최적조류계산을 이용한 송전선 혼잡비용 감소 연구)

  • Jeong, Yun-Ho;Lee, Kwang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.107-109
    • /
    • 2000
  • This paper presents an algorithm for reducing congestion cost using decoupled optimal power flow. The main idea of this algorithm is to reduce the reactive power flows on the congested lines in reactive power optimization. New objective function for reducing congestion cost is proposed in the reactive formulation by introducing the shadow prices for congested lines. The proposed algorithm is tested for IEEE 14-bus sample system, and the results are presented and discussed.

  • PDF

A Study on the Determination of Optimal UPFC Location (최적의 UPFC 위치 결정에 관한 연구)

  • Bae, Cherl-O
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2009
  • The unified power flow controller(UPFC) is one of the most effective devices in the FACTS family. This paper concerns about a filtering technique for reducing the computer calculation to determine the optimal location of UPFC in a power system. The sensitivities of the power generation cost for UPFC control parameters are evaluated. This technique requires that only one optimal power flow is run to get UPFC sensitivities for all possible transmission lines. To find out a optimal locating of a single UPFC in power system, an ideal transformer model which consists of a complex turns ratio and a variable shunt admittance was used. In this model, the UPFC control variables do not depend on UPFC input and output currents and voltages. The sensitivity method was tested on a 5-bus system derived from the IEEE 14-bus system and IEEE 14-bus system to establish its effectiveness.

  • PDF

Steady-state Operational Strategies of UPFC in the KEPCO Transmission System

  • Chang, B.H.;Choo, J.B.;Xu, X.K.;Lam, B.P.
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.3
    • /
    • pp.161-167
    • /
    • 2003
  • This paper presents a study performed to investigate the steady-state operational strategies of UPFCs in the Jeollanam-Do system in Korea. The objective of the study was to determine the UPFC operating points under normal and contingency conditions. The study consists of developing load flow models to simulate different load levels with and without UPFCs in the system, assessing the effectiveness of UPFCs by contingency analysis, and introducing optimal corrective actions for removing voltage problems caused by contingencies. The paper describes analytical tools, models and approach. It also includes analysis and discussion of the study results. The paper contributes to the area of transmission operational studies with FACTS applications.

Particle image velocimetry measurement of complex flow structures in the diffuser and spherical casing of a reactor coolant pump

  • Zhang, Yongchao;Yang, Minguan;Ni, Dan;Zhang, Ning;Gao, Bo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.368-378
    • /
    • 2018
  • Understanding of turbulent flow in the reactor coolant pump (RCP) is a premise of the optimal design of the RCP. Flow structures in the RCP, in view of the specially devised spherical casing, are more complicated than those associated with conventional pumps. Hitherto, knowledge of the flow characteristics of the RCP has been far from sufficient. Research into the nonintrusive measurement of the internal flow of the RCP has rarely been reported. In the present study, flow measurement using particle image velocimetry is implemented to reveal flow features of the RCP model. Velocity and vorticity distributions in the diffuser and spherical casing are obtained. The results illuminate the complexity of the flows in the RCP. Near the lower end of the discharge nozzle, three-dimensional swirling flows and flow separation are evident. In the diffuser, the imparity of the velocity profile with respect to different axial cross sections is verified, and the velocity increases gradually from the shroud to the hub. In the casing, velocity distribution is nonuniform over the circumferential direction. Vortices shed consistently from the diffuser blade trailing edge. The experimental results lend sound support for the optimal design of the RCP and provide validation of relevant numerical algorithms.

Optimal Capacitor Placement Considering Voltage-stability Margin with Hybrid Particle Swarm Optimization

  • Kim, Tae-Gyun;Lee, Byong-Jun;Song, Hwa-Chang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.786-792
    • /
    • 2011
  • The present paper presents an optimal capacitor placement (OCP) algorithm for voltagestability enhancement. The OCP issue is represented using a mixed-integer problem and a highly nonlinear problem. The hybrid particle swarm optimization (HPSO) algorithm is proposed to solve the OCP problem. The HPSO algorithm combines the optimal power flow (OPF) with the primal-dual interior-point method (PDIPM) and ordinary PSO. It takes advantage of the global search ability of PSO and the very fast simulation running time of the OPF algorithm with PDIPM. In addition, OPF gives intelligence to PSO through the information provided by the dual variable of the OPF. Numerical results illustrate that the HPSO algorithm can improve the accuracy and reduce the simulation running time. Test results evaluated with the three-bus, New England 39-bus, and Korea Electric Power Corporation systems show the applicability of the proposed algorithm.