• 제목/요약/키워드: Optimal performance design

검색결과 2,793건 처리시간 0.031초

차량 충돌 해석을 통한 중앙분리대의 최적 성능 설계 (Optimal Performance Design for Concrete Median Barrier with Crashworthiness Analysis)

  • 한석영;고성호;최형연
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.168-178
    • /
    • 2002
  • The purpose of this study is to develop an optimal performance design ova concrete median barrier using the design of experiment and crash simulation which is done by Pam-Crash, one of the commercial crash simulation software. A formula of characteristic value was suggested to obtain an optimal performance design considering all of von Mises stress, volume and acceleration at center of gravity of a heavy truck. An optimal design of a concrete median barrier was obtained by the analysis of variance based on design of experiment and crash simulation. A crash simulation with the optimal design was accomplished in order to verify the suitability of the suggested formula and the proper application of the design of experiment. The obtained optimal design was satisfied for a domestic design regulation of a concrete median barrier.

스마트 TMD의 최적설계를 위한 파라메터 연구 (Parameter Study for Optimal Design of Smart TMD)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제17권4호
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

치차성능의 최적성과 강건성을 고려한 치차제원 및 치면수정의 설계 (Design of Gear Dimension and Tooth Flank Form for Optimal and Robust Gear Performance)

  • 배인호;정태형
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.79-86
    • /
    • 2004
  • Tooth errors inevitable in the manufacturing process have large effect on the strength/durability and vibration performances of gear drives. We show that the manufacturing errors affect the overall gear performances, especially vibration performance, and propose a robust optimal design method for gear dimension and its tooth flank form that guarantees reliable performances to the variation of manufacturing errors. This method begins with a search of optimal design candidates by using the previously developed gear optimal design method for the strength/durability and vibration performances. Then, the statistical analysis method is applied to find a robust design solution for the vibration performance which is generally very sensitive to the manufacturing variations.

Improvement on optimal design of dynamic absorber for enhancing seismic performance of nuclear piping using adaptive Kriging method

  • Kwag, Shinyoung;Eem, Seunghyun;Kwak, Jinsung;Lee, Hwanho;Oh, Jinho;Koo, Gyeong-Hoi
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1712-1725
    • /
    • 2022
  • For improving the seismic performance of the nuclear power plant (NPP) piping system, attempts have been made to apply a dynamic absorber (DA). However, the current piping DA design method is limited because it cannot provide the globally optimum values for the target design seismic loading. Therefore, this study proposes a seismic time history analysis-based DA optimal design method for piping. To this end, the Kriging approach is introduced to reduce the numerical cost required for seismic time history analyses. The appropriate design of the experiment method is used to increase the efficiency in securing response data. A gradient-based method is used to efficiently deal with the multi-dimensional unconstrained optimization problem of the DA optimal design. As a result, the proposed method showed an excellent response reduction effect in several responses compared to other optimal design methods. The proposed method showed that the average response reduction rate was about 9% less at the maximum acceleration, about 5% less at the maximum value of the response spectrum, about 9% less at the maximum relative displacement, and about 4% less at the maximum combined stress compared to existing optimal design methods. Therefore, the proposed method enables an effective optimal DA design method for mitigating seismic response in NPP piping in the future.

불확실한 환경에서의 JIT시스템 강건설계에 관한 연구 (A Study on Robust Design of JIT System in Uncertain Environment)

  • 조용욱;박명규
    • 대한안전경영과학회지
    • /
    • 제2권2호
    • /
    • pp.29-40
    • /
    • 2000
  • In this paper, under JIT kanban system designed by Moeeni, each performance measures (service level, inventory level) identify the robust optimal level at a uncertain environment, and when there are multiple performance characteristics, it propose the optimal design-method and the optimal level decision-method, which consider multiple performance characteristics.

  • PDF

태양광열-지열 이용 Tri-generation 시스템의 적정 용량 설계를 위한 해석 연구 (Study on the Optimal Capacity Design for Tri-generation System using PVT and GSHP)

  • 배상무;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.16-23
    • /
    • 2019
  • Renewable energy systems are essential for the realization of zero energy building (ZEB). Moreover, the integrated system using solar and geothermal energy has been developed for heating, cooling and power of the building. However, there are few studies considering various design factors for system design. In this study, in order to develop the optimal design method for the system, the performance of the system was quantitatively compared and analyzed through dynamic simulation. Moreover, economic analysis was conducted based on the results of system performance. Through the performance and economic analysis results, the optimal design method of the tri-generation system was proposed.

Performance based optimal seismic retrofitting of yielding plane frames using added viscous damping

  • Lavan, O.;Levy, R.
    • Earthquakes and Structures
    • /
    • 제1권3호
    • /
    • pp.307-326
    • /
    • 2010
  • This paper is concerned with the optimal seismic design of added viscous dampers in yielding plane frames. The total added damping is minimized for allowable values of local performance indices under the excitation of an ensemble of ground motions in both regular and irregular structures. The local performance indices are taken as the maximal inter-story drift of each story and/or the normalized hysteretic energy dissipated at each of the plastic hinges. Gradients of the constraints with respect to the design variables (damping coefficients) are derived, via optimal control theory, to enable an efficient first order optimization scheme to be used for the solution of the problem. An example of a ten story three bay frame is presented. This example reveals the following 'fully stressed characteristics' of the optimal solution: damping is assigned only to stories for which the local performance index has reached the allowable value. This may enable the application of efficient and practical analysis/redesign type methods for the optimal design of viscous dampers in yielding plane frames.

구배 지수에 근거한 MEMS 구조물의 강건 최적 설계 기법 (Gradient Index Based Robust Optimal Design Method for MEMS Structures)

  • 한정삼;곽병만
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1234-1242
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation for MEMS structures and its application to a resonant-type micro probe. The basic idea is to use the gradient index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-effective and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation. This method, although shown for MEMS structures, may as well be easily applied to conventional mechanical structures where information on uncertainties is lacking but robustness is highly important.

구배 지수에 근거한 강건 최적 설계 기법을 이용한 공진형 미소탐침의 강건 최적화 (Robust Optimization of a Resonant-type Micro-probe Using Gradient Index Based Robust Optimal Design Method)

  • 한정삼;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1254-1261
    • /
    • 2003
  • In this paper we present a simple and efficient robust optimal design formulation and its application to a resonant-type micro probe. The basic idea is to use the Gradient Index (GI) to improve robustness of the objective and constraint functions. In the robust optimal design procedure, a deterministic optimization for performance of MEMS structures is followed by design sensitivity analysis with respect to uncertainties such as fabrication errors and change of operating conditions. During the process of deterministic optimization and sensitivity analysis, dominant performance and uncertain variables are identified to define GI. The GI is incorporated as a term of objective and constraint functions in the robust optimal design formulation to make both performance and robustness improved. While most previous approaches for robust optimal design require statistical information on design variations, the proposed GI based method needs no such information and therefore is cost-efficient and easily applicable to early design stages. For the micro probe example, robust optimums are obtained to satisfy the targets for the measurement sensitivity and they are compared in terms of robustness and production yield with the deterministic optimums through the Monte Carlo simulation.

  • PDF

이점 대각 이차 근사화 기법과 통계적 제한조건을 적용한 강건 최적설계 기법 (Robust Optimal Design Method Using Two-Point Diagonal Quadratic Approximation and Statistical Constraints)

  • 권용삼;김민수;김종립;최동훈
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2483-2491
    • /
    • 2002
  • This study presents an efficient method for robust optimal design. In order to avoid the excessive evaluations of the exact performance functions, two-point diagonal quadratic approximation method is employed for approximating them during optimization process. This approximation method is one of the two point approximation methods. Therefore, the second order sensitivity information of the approximated performance functions are calculated by an analytical method. As a result, this enables one to avoid the expensive evaluations of the exact $2^{nd}$ derivatives of the performance functions unlike the conventional robust optimal design methods based on the gradient information. Finally, in order to show the numerical performance of the proposed method, one mathematical problem and two mechanical design problems are solved and their results are compared with those of the conventional methods.