• 제목/요약/키워드: Optimal frequency

검색결과 2,186건 처리시간 0.032초

칼만필터를 이용한 부유체운동의 최적제어 (Optimal Control of Dynamic Positioned Vessel Using Kalman Filtering Techniques)

  • 이판묵;이상무;홍사영
    • 한국해양공학회지
    • /
    • 제2권2호
    • /
    • pp.37-45
    • /
    • 1988
  • A dynamically positioned vessel must be capable of maintaining a specified position and direction by controlling the thruster devices. The motions of a vessel are often assuned to tne sum of low frequency(LF)motions and high frequency(HF)motions. The former is mainly due to wind, current and second order wave forces, while the latter is mainly due to first order wave forces. In order to avoid the high frequency thruser modulation, the control system must include filters to estimate the low frequency motions from the measured motion signals, This paper presents a control system based on Kalman filtering technique and optimal control tyeory. Using the combined kalmam filter, LF motion estimates and HF ones are achieved from the motion measurement of the vessel. The estimated low frequency motions are used as inputs to the dynamic positioning system. The thruster modulation is minimized using the optimal control theory; Linear Quadratic Gaussian(LQG)controller. The performances of the Kalman filter and the dynamic positioned vessel are investigated by computer simulation.

  • PDF

Prediction and analysis of optimal frequency of layered composite structure using higher-order FEM and soft computing techniques

  • Das, Arijit;Hirwani, Chetan K.;Panda, Subrata K.;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.749-758
    • /
    • 2018
  • This article derived a hybrid coupling technique using the higher-order displacement polynomial and three soft computing techniques (teaching learning-based optimization, particle swarm optimization, and artificial bee colony) to predict the optimal stacking sequence of the layered structure and the corresponding frequency values. The higher-order displacement kinematics is adopted for the mathematical model derivation considering the necessary stress and stain continuity and the elimination of shear correction factor. A nine noded isoparametric Lagrangian element (eighty-one degrees of freedom at each node) is engaged for the discretisation and the desired model equation derived via the classical Hamilton's principle. Subsequently, three soft computing techniques are employed to predict the maximum natural frequency values corresponding to their optimum layer sequences via a suitable home-made computer code. The finite element convergence rate including the optimal solution stability is established through the iterative solutions. Further, the predicted optimal stacking sequence including the accuracy of the frequency values are verified with adequate comparison studies. Lastly, the derived hybrid models are explored further to by solving different numerical examples for the combined structural parameters (length to width ratio, length to thickness ratio and orthotropicity on frequency and layer-sequence) and the implicit behavior discuss in details.

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.

Shannon 엔트로피 개념을 이용한 가보 웨이블렛 최적 형상의 선정 (The Selection of the Optimal Gabor Wavelet Shape Factor Using the Shannon Entropy Concept)

  • Hong, Jin-Chul;Kim, Yoon-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.324.1-324
    • /
    • 2002
  • The continuous Gabor wavelet transform (GWT) has been utilized as a useful time-frequency analysis tool to identify the rapidly-varying characteristics of some wave signals. In the application of GWT, it is important to select the Gabor wavelet with the optimal shape factor by which the time-frequency distribution of a signal can be accurately estimated. To find the signal-dependent optimal Gator wavelet shape factor, the notion of the Shannon entropy which measures the extent of signal energy concentration in the time-frequency plane is employed. (omitted)

  • PDF

Optimal placement and design of nonlinear dampers for building structures in the frequency domain

  • Fujita, Kohei;Kasagi, Masatoshi;Lang, Zi-Qiang;Penfei, Guo;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1025-1044
    • /
    • 2014
  • In this paper, a systematic technique is proposed for the optimal placement and design of nonlinear dampers for building structures. The concept of Output Frequency Response Function (OFRF) is applied to analytically represent the output frequency response of a building frame where nonlinear viscous dampers are fitted for suppression of vibration during earthquakes. An effective algorithm is derived using the analytical representation to optimally determine the locations and parameters of the nonlinear dampers. Various numerical examples are provided to verify the effectiveness of the optimal designs. A comparison of the vibration suppression performance with that of the frame structure under a random or uniform damping allocation is also made to demonstrate the advantages of the new designs over traditional solutions.

An Optimal Method to Improve the Visual Quality of Medical Images

  • Shin, Choong-ho;Jung, Chai-yeoung
    • 통합자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.141-144
    • /
    • 2015
  • As the visual quality of X-ray images is a critical reference for the accuracy of the clinical diagnosis, the methods to improve the quality of X-ray images have been investigated. Among many existing methods, using frequency domain filter is a very powerful method to improve the visual quality of images. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the subjected image. The medical X-ray images using the optimal high pass filter has shown improved edges. Further, the optimal high frequency emphasis filter has shown the improved contrast of flat areas by using the result image from the optimal high pass filter. Also the resulting images of the global contrast have improved by the histogram equalization. As a result, the proposed methods have shown enhanced contrast and edges of the images with noise canceling effect.

최적PID 제어기에 의한 2지역 전력계통 부하주파수 제어특성에 관한 연구 (Load Frequency Control Charateristic of 2-Area Power Systems by Optimal PID Controller)

  • 정형환;이준탁;안병철;김용필;김해재
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.703-710
    • /
    • 1994
  • This paper describes for the applicability of optimal PID controller to the load frequency control of 2-area power systems. The proposed optimal PID controllers are designed by the optimization technique of P.I.D's gain coefficients using the relatively ingeneous simplex method, and we have considered the system sensitivity for the optimal gains and the stable effects of systems to speed regulation changes. This PID controller for load frequency control systems with exciter shows better performances and robustness than conventional tie-line bias controller.

  • PDF

심전도신호 샘플링 주파수에 따른 R파 검출 최적 문턱치 설정 (Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1420-1428
    • /
    • 2017
  • R파 검출에 사용되는 여러 심전도 데이터베이스는 샘플링 주파수의 차이로 인해 서로 다른 환경에 적용할 경우 성능에 변화가 많아 알고리즘의 신뢰도를 보장하기 어렵다. 본 연구에서는 심전도신호의 샘플링 주파수에 따른 R파 검출의 최적 문턱치 설정 방법을 제안한다. 이를 위해 미분 기반의 이동평균과 제곱합수를 이용하여 전처리를 수행하였다. 이후 샘플링 주파수에 따라 피크 문턱치에 대한 최적 값을 검출하였다. 문턱치 단계는 신호의 변화와 이전 검출된 피크 값에 따라 문턱치를 변경함으로써 최적의 성능을 나타내는 값을 선정하는 과정으로 실험하였다. 제안한 방법의 우수성을 입증하기 위해 부정맥 데이터베이스 레코드를 대상으로 실험한 결과 MIT-BIH 샘플링 주파수 360Hz에 대한 미분 구간($N_d$), 윈도우 사이즈(N), 문턱 계수($p_{th}$)의 최적 값은 각각 7, 8, 6.6일 때 R파 검출율은 99.758%의 우수한 성능을 나타내었다.

전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계 (Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application)

  • 오창열;김종수;이병국
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

국가적 관점에서 각 용도별 ESS 적정용량 산정을 위한 투자수리모델 수립에 관한 연구 (Study on Establishing Investment Mathematical Models for Each Application ESS Optimal Capacity in Nationwide Perspective)

  • 김정훈;윤석민
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.979-986
    • /
    • 2016
  • At present, electric power industry around the world are being gradually changed to a new paradigm, such as electrical energy storage system, the wireless power transmission. Demand for ESS, the core technology of the new paradigm, has been growing worldwide. However, it is essential to estimate the optimal capacity of ESS facilities for frequency regulation because the benefit would be saturated in accordance with the investment moment and the increase of total invested capacity of ESS facilities. Hence, in this paper, the annual optimal mathematical investment model is proposed to estimate the optimal capacity and to establish investment plan of ESS facility for frequency regulation. The optimal mathematical investment model is newly established for each season, because the construction period is short and the operation effect for the load by seasons is different unlike previous the mathematical investment model. Additionally, the marginal operating cost is found by new mathematical operation model considering no-load cost and start-up cost as step functions improving the previous mathematical operation model. ESS optimal capacity is established by use value in use iterative methods. In this case, ESS facilities cost is used in terms of the value of the beginning of the year.