• 제목/요약/키워드: Optimal frame design

검색결과 239건 처리시간 0.033초

스페이스프레임 구조물의 통합설계시스템 개발 (Development of Integrated Design System for Space Frame Structures)

  • 이주영;이재홍
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

PATRAN 데이타베이스를 기반으로 한 스페이스 프레임의 통합설계시스템 (Space Frame Integrated Design System based on PATRAN Database)

  • Lee Jae Hong;Lee Joo Young
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.210-215
    • /
    • 1998
  • To design a space frame structure by the conventional method is not easy in practical sense since it is generally a three-dimensional complicated form, and stability and nonlinear problems are not easily checked in the design process. This paper describes two modules, the Model Generator which is based on PATRAN user interface that enables users to generate a complicated finite element model; the Optimum Design Module which analyzes output results of analysis program, and designs members of a space frame. The Model Generator is based on PCL while C++ language is used in the Optimum Design Module. Structural analysis is performed by using ABAQUS. All of these modules constitute Space Frame Integrated Design System. The Core of the system is PATRAN database, in which the Model Generator creates information of a finite element model. Then, PATRAN creates input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

Optimal Design of the Mover Considering the Electrical Characteristic of Linear Motor

  • Lee, Jung-Myung;Han, Dong-Seop;Lee, Seong-Wook;An, Tae-Won;Han, Geun-Jo
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.321-324
    • /
    • 2006
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal for the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researches on each part of it must be conducted. In this study, we dealt with the optimum design for the mover of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the mover, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint condition.

  • PDF

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

On the progressive collapse resistant optimal seismic design of steel frames

  • Hadidi, Ali;Jasour, Ramin;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제60권5호
    • /
    • pp.761-779
    • /
    • 2016
  • Design of safe structures with resistance to progressive collapse is of paramount importance in structural engineering. In this paper, an efficient optimization technique is used for optimal design of steel moment frames subjected to progressive collapse. Seismic design specifications of AISC-LRFD code together with progressive collapse provisions of UFC are considered as the optimization constraints. Linear static, nonlinear static and nonlinear dynamic analysis procedures of alternate path method of UFC are considered in design process. Three design examples are solved and the results are discussed. Results show that frames, which are designed solely considering the AISC-LRFD limitations, cannot resist progressive collapse, in terms of UFC requirements. Moreover, although the linear static analysis procedure needs the least computational cost with compared to the other two procedures, is the most conservative one and results in heaviest frame designs against progressive collapse. By comparing the results of this work with those reported in literature, it is also shown that the optimization technique used in this paper significantly reduces the required computational effort for design. In addition, the effect of the use of connections with high plastic rotational capacity is investigated, whose results show that lighter designs with resistance to progressive collapse can be obtained by using Side Plate connections in steel frames.

SIZE OPTIMIATION OF AN ENGINE ROOM MEMBER FOR CRASHWORTHINESS USING RESPONSE SURFACE METHOD

  • Oh, S.;Ye, B.W.;Sin, H.C.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.93-102
    • /
    • 2007
  • The frontal crash optimization of an engine room member using the response surface method was studied. The engine room member is composed of the front side member and the sub-frame. The thicknesses of the panels on the front side member and the sub-frame were selected as the design variables. The purpose of the optimization was to reduce the weight of the structure, under the constraint that the objective quantity of crash energy is absorbed. The response surface method was used to approximate the crash behavior in mathematical form for optimization procedure. To research the effect of the regression method, two different methodologies were used in constructing the response surface model, the least square method and the moving least square method. The optimum with the two methods was verified by the simulation result. The precision of the surrogate model affected the optimal design. The moving least square method showed better approximation than the least square method. In addition to the deterministic optimization, the reliability-based design optimization using the response surface method was executed to examine the effect of uncertainties in design variables. The requirement for reliability made the optimal structure be heavier than the result of the deterministic optimization. Compared with the deterministic optimum, the optimal design using the reliability-based design optimization showed higher crash energy absorption and little probability of failure in achieving the objective.

강도보강용 STS304 베젤 프레임 헤밍 공정의 금형 설계 (The Die Design of STS304 Bezel Frame for The Strength Reinforcement in Hemming Process)

  • 김강현;이상호;김병민
    • 소성∙가공
    • /
    • 제17권6호
    • /
    • pp.436-442
    • /
    • 2008
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the structural strength and resistance to shock of TFT-LCD module are getting to be reduced. Hence, TFT-LCD module is the strength reinforced by bezel frame. The bezel frame was produced by the multi hemming processes with several folding parts. The determination of the optimal number of hemming part and structure of bezel frame are very important process parameter to obtain the strength of that. The effect of process parameters on strength of bezel frame was investigated by FEA. Based on the result of FEA, the experiment was performed using manufactured hemming die, the result of the experiment was compared with FEA and verified. Also, three point bending tests were performed to check the strength of bezel frame.

와전류 제동프레임의 구조해석 및 최적설계 (Structural Analysis and Optimal Design of Eddy Current Brake Frame)

  • 이승철;강신유
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.106-113
    • /
    • 2004
  • The eddy current brake system is a non-contact brake based on the mutual relation between the rail and the frame. Consequently, the accuracy is required in estimating the stress concentration and the deformation of the eddy current brake system. In this paper, the static analysis considering the gravity and the suction force for the deformation and the stress concentration of the main frame of the initially designed eddy current brake system was carried out. The shape of the I-type beam obtained from the optimization was analyzed and compared with the initial model. Also, the initial model was modified based on the optimization model and the result was verified to have the acceptable improvement.

차량 구조물 안전설계를 위한 진동특성에 관한 연구 (A Study on the Vibration Characteristics for Safety Design of Vehicle Structure)

  • 신귀수;이기형
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.13-21
    • /
    • 1998
  • This is a study on the natural vibration characteristics of Vehicle frame. Nowadays, many trucks freight the over-load, do the car designers consider the over-load about 200% in the design. It's necessary to make the model of a vehicle and simulate it for the test of driving condition, durability and vibration behavior before the vehicle is manufactured. If it is possible to make a simulation using the static and dynamic analysis, this is very useful in accomplishing an optimal design of the vehicle. In this paper, we studied the vibration characteristics of a truck body frame. The automobile body frame model for experiment is made smaller than real size frame with the ratio of 1/10. The vibration characteristics of a frame is considered as one of main factors in analyzing and improving the problem for ride comfort, noise and vibration reduction. Therefore, we experimented two method to neglect the nonlinearity. First is bolting and second is welding at the joint section. We compared computer simulation results and experimental data.

  • PDF