• Title/Summary/Keyword: Optimal frame design

Search Result 239, Processing Time 0.03 seconds

Optimal Design of Reinforced Concrete Frame Structure by Limit State Design Method (LSD에 의한 철근콘크리트 뼈대 구조의 최적설계)

  • 김동희;유홍렬;박문호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.61-67
    • /
    • 1985
  • This study is concerned with the optimum design of reinforced concrete frame structure with multi-stories and multi-bays by Limit State Design Method aimed to establish a synthetical optimal method that can simultaneously acomplish structural analysis and sectional desig. For optimum solution, the Successive Linear Programming known as effective to nonlinear optimization problem: including both multi-design variables and mulit-constrained condition was applied. The developed algorithm was applied to an actual structure and reached following results. 1)The developed algorithm was rvey effective converging to an optimal solution with 3 to 5 iteration. 2)An optimal solution was showed when bending moment redistribution factor a was 0.80. 3)The column was, regardless of story, controlled by the long column when unbraced, while in case of braced column, it is designed with 3 short column controlled by thrust and bending moment, and the supporting condition had little effect on the optimization results.

  • PDF

A Study of Optimal Design for Mg Armrest Frame by using Response Surface Method (반응표면법을 이용한 마그네슘 암레스트 프레임의 최적설계 연구)

  • Kim, Eun-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.797-804
    • /
    • 2012
  • Magnesium has a long tradition of use as a lightweight material in the field of automotive industry. This paper presents the design optimization process of Mg armrest frame to minimize its weight by replacing the steel frame. formerly, the analysis of steel armrest frame was peformed to determine the design specifications for Mg armrest frame. The initial design of Mg armrest frame was carried out by topological optimization technique. After six types of design variables and four types of response variables were defined, DOE(Design of Experiment) and RSM (Response Surface Method) were applied in order to measure sensitivity of design variables and realize optimization through regression model. After design optimization, the weight of the optimized Mg armrest frame was reduced by about 3% compared to the initial design of the Mg frame and was decreased by 41.7% in comparison with that of the steel frame. Some prototypical armrest frames were also made by die casting process and tested. The results were satisfying for its design specifications.

Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures (비선형 차체프레임구조물의 민감도해석 및 최적화)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

Dynamic Sensitivity Analysis For Lateral Drift Control Of Frame-Shear Wall Structures (골조-전단벽 구조물의 횡변위제어를 위한 동적 민감도 해석)

  • Lee, Han-Joo;Kim, Ji-Youn;Han, Seung-Baek;Nam, Kyung-Yun;Kim, Ho-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.571-576
    • /
    • 2007
  • This study presents stiffness-based optimal design to control quantitatively lateral drift of frame-shear wall structures subject to seismic loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also, the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. The 12 story frame-shear wall structural models is considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Probabilistic performance-based optimal design of low-rise eccentrically braced frames considering the connection types

  • Mohammad Ali Fathalia;Seyed Rohollah Hoseini Vaez
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.673-687
    • /
    • 2023
  • In this study, the weight and the connections type layout of low-rise eccentrically braced frame (EBF) have been optimized based on performance-based design method. For this purpose, two objective functions were defined based on two different aspects on rigid connections, in one of which minimization and in the other one, maximization of the number of rigid connections was considered. These two objective functions seek to increase the area under the pushover curve, in addition to the reduction of the weight and selection of the optimum connections type layout. The performance of these objective functions was investigated in optimal design of a three-story eccentrically braced frame, using two meta-heuristic algorithms: Enhanced Colliding Bodies Optimization (ECBO) and Enhanced Vibrating Particles System (EVPS). Then, the reliability indices of the optimal designs for both objective functions were calculated for the story lateral drift limits using Monte-Carlo Simulation (MCS) method. Based on the reliability assessment results of the optimal designs and taking the three levels of safety into account, the final designs were selected and their specifications were compared.

Optimal Design of Discharge Electrode Frame in Electrostatic Precipitator (전기집전기 방전극 프레임 최적 설계)

  • 이후광;최재승;황석환;조창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.626-629
    • /
    • 1997
  • In this study, position optimization of insulation rods and suspension rods in discharge electrode frame of electrostatic precipitator(EP) is performed using finite element analysis(FEA). The object of the optimization is to minimize the difference of altitudes in unevenly sagged horizontal structure and to regulate the size of materials within the allowable stress bounds. Uppermost horizontal channel of discharge electrode frame is highly stressed and uniformity of lowest horizontal angle depends on the position of rods. Ten types of frame are analyzed and one recommended model is presented.

  • PDF

Proposal for Optimal Outrigger Location Considering Stiffness of Frame (프레임의 강성을 고려한 최적 아웃리거 위치의 제안)

  • Kim, Hyong-Kee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.183-190
    • /
    • 2019
  • This paper intended to propose the optimal outrigger position in tall building. For this purpose, a schematic structure design of 70 stories building was accomplished by using MIDAS-Gen. In this analysis research, the key variables were the stiffness of outrigger, the stiffness of frame, the stiffness of shear wall, the stiffness of exterior column connected in outrigger and the outrigger location in height. With the intention of looking for the optimum location of outrigger system in high-rise building, we investigated the lateral displacement in top floor. The study proposed the new method to predict the optimal location of outrigger system considering the frame stiffness. And it is verified that the paper results can be helpful in providing the important engineering materials for finding out the optimum outrigger position in tall building.

Determination of Optimal Process Condition for the Precision Blanking of Lend Frame (리드프레임 타발 공정의 최적 전단 조건의 선정)

  • Suh E. K.;Lim S. H.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.71-74
    • /
    • 2001
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factors. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factors and gain can be judged in the quantitative manners from the analysis of SN ratio.

  • PDF

A Study on the Characteristics of the Precision Blanking of Lead Frame (II): Determination of Optimal Process Condition (리드 프레임 타발공정의 전단특성에 관한 연구(II) - 최적 전단 조건의 선정)

  • 서의권;임상헌;심현보
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.132-137
    • /
    • 2002
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factor. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal Process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factor and gain can be judged in the quantitative manner from the analysis of SN ratio.

A Study on Design of Small Type Screw Decanter using Commercial Analysis Tool (상용해석 툴을 이용한 소형 스크류 디캔터의 설계에 관한 연구)

  • Kim, Y.S.;Kim, J.T.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.46-52
    • /
    • 2014
  • This study suggests a small-sized screw decanter specialized for dredging sites. Generally, conventional screw decanters are composed of a cylinder and a cone. However, the suggested screw decanter simply has a cone based on a cone-type bowl structure. In this research, a commercial analysis tool is used to establish an optimal design for the bowl and the screw conveyor. Moreover, the base frame, where the main bearings that support the spindle of the bowl and the screw conveyor are installed, is optimally designed considering the weight of the rotating body and the deflection caused by the high centrifugal force. Furthermore, the natural frequency range of the spinning body, the bowl and the screw conveyor, is applied to this base frame; it is designed not to correspond to the resonance frequency range and achieves stability as a result. This study suggests an optimal design for the rotating body and the base frame of a screw decanter considering its vibration characteristics. Such a design will prevent overuse of materials and help to reduce the weight and volume-and the price-of a screw decanter.