• Title/Summary/Keyword: Optimal flow-rate

Search Result 758, Processing Time 0.03 seconds

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

A Study on the Strategy to Maintain Optimal Flow-rate and Pressure of the Piping System for Individual Heating (개별 난방방식에서의 배관 내 절정 유량 및 압력유지에 관한 연구)

  • Hong Seok-Jin;Ryu Seong-Ryong;Seok Ho-Tae;Yeo Myoung-Souk;Kim Kwang-Woo
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.11-18
    • /
    • 2006
  • For the more comfortable thermal environment in residential buildings, it was necessary for variable components like as automatic flow limiting valves and/or balancing valves in hydronic system. And, these components had an effect on flow-rate and pressure inside pipe. In this case, the incompatibility between the design for the heating system and the selection of equipment was the causes of several problems in heating pipe network. In this study, we peformed measurements and analyses of flow rate and pressure inside pipe for radiant floor heating in residential buildings through field surveys and experiments in order to find out the actual conditions and problems. On the basis of this, we suggested the approach for the optimal flow-rate and pressure maintaining inside pipe in individual heating system.

A Study on the Optimal Water Flow Rate of the Solar Heating System (태양열 난방시스템의 최적 유량에 관한 연구)

  • Seong, Kwan-Jae;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.1
    • /
    • pp.2-11
    • /
    • 1983
  • The solar energy retention rate of a flat plate collector can be increased by increasing water flow rate through the collector which also increases the pumping energy incurred in obtaining that solar energy. The problem of optimal flow rate is formulated to fit within the framework of pontryagin's maximum principle and with a few simplifying assumptions, an optimal solution that can be easily implemented is obtaincd, The optimal solution is used in the simulation of a solar heating system using actual climatological data and the results are compared with that of on-off control. The result that not only the object function but, In some cases, also the solar energy retention rate the collector is increased. In is also found that the optimal control gets more advantageous as the solar insolation level gets lower, and also as tile cost of auxiliary heating fuel gets higher.

  • PDF

Optimal Design of Serial Connected PZT driven Micro Compressor (직렬 연결된 PZT 구동 마이크로 압축기의 최적 설계)

  • Lee, Il-Hwan;Yoon, Jae-Sung;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.421-426
    • /
    • 2005
  • Optimal design of serial connected PZT driven micro compressor was investigated. Modeling equations were derived using energy equation and mass conservation equation. The results show that mass flow rate was increased as number of connected micro compresses is increased. As pressure difference between suction port and discharge port in compressor group is increased, connected compressors have much more mass flow rate than single compressor. Mass flow rate is also increased as driving frequency is increased. And optimal design scale is suggested for highest efficiency or highest mass flow rate.

  • PDF

Control of Slurry Flow Rate in Copper CMP (구리 CMP시 슬러리 Flow Rate의 조절)

  • Kim, Tae-Gun;Kim, Nam-Hoon;Kim, Sang-Yong;Seo, Yong-Jin;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.34-37
    • /
    • 2004
  • Recently advancing mobile communication tools and I.T industry, semiconductor device is requested more integrated, faster operation time and more scaled-down. Because of these reasons semiconductor device is requested multilayer interconnection. For the multilayer interconnection chemical mechanical polishing (CMP) becomes one of the most useful process in semiconductor manufacturing process. In this experiment, we focus on understand the characterize and improve the CMP technology by control of slurry flow rate. Consequently, we obtain that optimal flow rate of slurry is 170ml/min, since optimal conditions are less chemical flow and performance high with good selectivity to Ta. If we apply this results to copper CMP process. it is thought that we will be able to obtain better yield.

  • PDF

On the convergence Rate Improvement of Mathematical Decomposition Technique on distributed Optimal Power Flow (수화적 분할 기법을 이요한 분산처리 최적조류계산의 수렴속도 향상에 관한 연구)

  • Hur, Don;Park, Jong-Keun;Kim, Balho-H.
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.3
    • /
    • pp.120-130
    • /
    • 2001
  • We present an approach to parallelizing optimal power flow that is suitable for distributed implementation and is applicable to very large interconnected power systems. This approach can be used by utilities to optimize economy interchange without disclosing details of their operating costs to competitors. Recently, it is becoming necessary to incorporate contingency constraints into the formulation, and more rapid updates of telemetered data and faster solution time are becoming important to better track changes in the system. This concern led to a research to develop an efficient algorithm for a distributed optimal power flow based on the Auxiliary Problem Principle and to study the convergence rate improvement of the distributed algorithm. The objective of this paper is to find a set of control parameters with which the Auxiliary Problem Principle (Algorithm - APP) can be best implemented in solving optimal power flow problems. We employed several IEEE Reliability Test Systems, and Korea Power System to demonstrate the alternative parameter sets.

  • PDF

Determination of the Optimal Strategy for Pump-And-Treat Method

  • Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.204-207
    • /
    • 2001
  • An optimization process for the design of groundwater remediation is developed by simultaneously considering the well location and the pumping rate. This process uses two independent models: simulation and optimization model. Groundwater flow and contaminant transport are simulated with MODFLOW and MT3D in simulation model. In optimization model, the location and pumping rate of each well are determined and evaluated by the genetic algorithm. In a homogeneous and symmetric domain, the developed model is tested using sequential pairs for pumping rate of each well, and the model gives more improved result than the model using sequential pairs. In application cases, the suggested optimal design shows that the main location of wells is on the centerline of contaminate distribution. The resulting optimal design also shows that the well with maximum pumping rate is replaced with the further one from the contaminant source along flow direction and that the optimal pumping rate declines when more cleanup time is given. But the optimal pumping rate is not linearly proportional to the cleanup time and the minimum total pumping volume does not coincide with the optimal pumping rate.

  • PDF

The Study on the Optimal Operating Conditions of Direct Charging Type Electrospray for Particulate Matter Collection (미세먼지 집진을 위한 직접 하전 방식 정전분무의 최적 동작 조건에 관한 연구)

  • Sugi Choi;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.474-481
    • /
    • 2023
  • This paper is an experimental study on the optimal operating conditions of direct charging type electrospray for particulate matter collection. To perform the research, a direct charging type electrospray visualization system was configured to photograph the spray shape of microdroplets, and experiments were performed with varying electrode distance, flow rate, and applied voltage, which are the main factors affecting the particulate matter collection efficacy. Through image processing, the total number of microdroplets according to each condition was analyzed, and the number of microdroplets with a diameter of 1.5 mm or less was confirmed. In addition, by calculating the number of microdroplets per power consumption according to the applied voltage, the optimal operating conditions were derived in terms of energy consumption efficacy, and the microdroplet size distribution was analyzed under the optimal operating conditions. As a result of the experiment, it was confirmed that the optimal operating condition was at a flow rate of 10 mL/min and a voltage of -20 kV in case of 5 mm electrode distance, and at a flow rate of 15 mL/min and a voltage of -30 kV in case of 100 mm electrode distance.

Performance Analysis of a Hydrogen Liquefaction System using Commercial Cryogenic Refrigerators for Precooling (상용 극저온 냉동기를 예냉기로 채택한 수소액화 시스템의 성능 해석)

  • Kim, Seung-Hyun;Chang, Ho-Myung;Kang, Byung Ha
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.2
    • /
    • pp.53-64
    • /
    • 1998
  • Thermal analysis on a Linde-Hampson hydrogen liquefaction system using cryogenic refrigerators as precooling has been carried out. Three commercially available models of cryogenic refrigerators, such as CTI l020CP, CVI CGR009 and CVI CGR011, are considered in the performance analysis. The effect of ortho-para conversion process during hydrogen liquefaction is also studied in detail. The results obtained indicate that the optimal hydrogen mass flow rate and the optimal compressed pressure exist for the maximum hydrogen liquefaction rate. The optimal compressed pressure is increased in the range of 80 - 120 bar with an increase in the hydrogen mass flow rate. It is also found that better performance could be obtained with a cryogenic refrigerator, which produces high cooling capacity at precooling temperature in the range of 80 - 100 K.

  • PDF

Study of Optimal Location and Compensation Rate of Thyristor-Controlled Series Capacitor Considering Multi-objective Function

  • Shin, Hee-Sang;Cho, Sung-Min;Kim, Jin-Su;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.428-435
    • /
    • 2013
  • Flexible AC Transmission System (FACTS) application study on enhancing the flexibility of AC power system has continued to make progress. A thyristor-controlled series capacitor (TCSC) is a useful FACTS device that can control the power flow by adjusting line impedances and minimize the loss of power flow and voltage drop in a transmission system by adjusting line impedances. Reduced power flow loss leads to increased loadability, low system loss, and improved stability of the power system. This study proposes the optimal location and compensation rate method for TCSCs, by considering both the power system loss and voltage drop of transmission systems. The proposed method applies a multi-objective function consisting of a minimizing function for power flow loss and voltage drop. The effectiveness of the proposed method is demonstrated using IEEE 14- and a 30-bus system.