• Title/Summary/Keyword: Optimal design weight

Search Result 690, Processing Time 0.031 seconds

Experimental study on ultra-high strength concrete(130 MPa) (초고강도 콘크리트(130MPa)에 대한 실험적 연구)

  • Cho Choonhwan;Yang Dong-il
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 2024
  • High-rise, large-scale, and diversification of buildings are possible, and the reduction of concrete cross-sections reduces the weight of the structure, thereby increasing or decreasing the height of the floor, securing a large number of floors at the same height, securing a large effective space, and reducing the amount of materials, rebar, and concrete used for designating the foundation floor. In terms of site construction and quality, a low water binder ratio can reduce the occurrence of dry shrinkage and minimize bleeding on the concrete surface. It has the advantage of securing self-fulfilling properties by improving fluidity by using high-performance sensitizers, making it easier to construct the site, and shortening the mold removal period by expressing early strength of concrete. In particular, with the rapid development of concrete-related construction technology in recent years, the application of ultra-high-strength concrete with a design standard strength of 100 MPa or higher is expanding in high-rise buildings. However, although high-rise buildings with more than 120 stories have recently been ordered or scheduled in Korea, the research results of developing ultra-high-strength concrete with more than 130 MPa class considering field applicability and testing and evaluating the actual applicability in the field are insufficient. In this study, in order to confirm the applicability of ultra-high-strength concrete in the field, a preliminary experiment for the member of a reduced simulation was conducted to find the optimal mixing ratio studied through various indoor basic experiments. After that, 130 MPa-class ultra-high-strength concrete was produced in a ready-mixed concrete factory in a mock member similar to the life size, and the flow characteristics, strength characteristics, and hydration heat of concrete were experimentally studied through on-site pump pressing.

Effects of Supplementation of β-Mannanase in Corn-soybean Meal Diets on Performance and Nutrient Digestibility in Growing Pigs

  • Lv, J.N.;Chen, Y.Q.;Guo, X.J.;Piao, X.S.;Cao, Y.H.;Dong, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.4
    • /
    • pp.579-587
    • /
    • 2013
  • A total of 288 crossbred (Duroc${\times}$Landrace${\times}$Yorkshire) growing pigs were used in two experiments to investigate the effects of adding ${\beta}$-mannanase to corn-soybean meal-based diets on pig performance and apparent total tract digestibility (ATTD). Both experiments lasted 28 d and were split into two phases namely 1 to 14 days (phase 1) and 15 to 28 days (phase 2). In Exp. 1,144 pigs weighing $23.60{\pm}1.59$ kg BW were assigned to one of four corn-soybean meal-based diets containing 0, 200, 400 or 600 U/kg ${\beta}$-mannanase. Increasing the level of ${\beta}$-mannanase increased weight gain (quadratic effect; p<0.01) and feed efficiency (linear and quadratic effect; p<0.01) during the second phase and the overall experiment. However, performance was unaffected (p>0.05) by treatment during phase 1. Increasing the amount of ${\beta}$-mannanase in the diet improved (linear and quadratic effect; p<0.05) the ATTD of CP, NDF, ADF, calcium, and phosphorus during both phases. Based on the results of Exp. 1, the optimal supplementation level was determined to be 400 U/kg and this was the level that was applied in Exp. 2. In Exp. 2, 144 pigs weighing $23.50{\pm}1.86$ kg BW were fed diets containing 0 or 400 U/kg of ${\beta}$-mannanase and 3,250 or 3,400 kcal/kg digestible energy (DE) in a $2{\times}2$ factorial design. ${\beta}$-Mannanase supplementation increased (p<0.01) weight gain and feed efficiency while the higher energy content increased (p<0.01) feed intake and feed efficiency during both phases and overall. Increased energy content and ${\beta}$-mannanase supplementation both increased (p<0.05) the ATTD of DM, CP, NDF, ADF, phosphorus, and GE during both phases. There were no significant interactions between energy level and ${\beta}$-mannanase for any performance or digestibility parameter. In conclusion, the ${\beta}$-mannanase used in the present experiment improved the performance of growing pigs fed diets based on corn and soybean. The mechanism through which the improvements were obtained appears to be related to improvements in ATTD.

A Study on the Estimation of Optimal Unit Content of Binder for the Soil Stabilizer Using the Recycled Resource in DMM (심층혼합공법에서 순환자원을 활용한 지반안정재의 최적 단위결합재량 산정에 관한 연구)

  • Seo, Se-Gwan;Lee, Khang-Soo;Kim, You-Seong;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.37-44
    • /
    • 2019
  • The compressive strength of the soil stabilizer in the deep mixing method (DMM) depends on kinds of soil, particle size distribution, and water content. Because of this, Laboratory test has to perform to estimate the unit weight of binder to confirm the satisfaction of the design strength. In this study, uniaxial compression strength was measured by mixing the soil stabilizers developed in the previous study with clay in Busan, Yeosu, and Incheon area. And the strength enhancement effect was evaluated comparing with blast furnace slag cement (BFSC). Also, the relationship between the unit content of binder and uniaxial compressive strength was investigated in order to easily calculate the unit weight of binder required to ensure the stability of the ground at the field. As the results of the analysis, the relationship between the unit content of binder and the uniaxial compressive strength are ${\gamma}_B=(108.93+0.0284q_u){\pm}35$ when W/B is 70%, and ${\gamma}_B=(122.93+0.0270q_u){\pm}40$ when W/B is 80%.

Structural Optimization of 3D Printed Composite Flight Control Surface according to Diverse Topology Shapes (다양한 위상 형상에 따른 3D 프린트 복합재료 조종면의 구조 최적화)

  • Myeong-Kyu Kim;Nam Seo Goo;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2023
  • When designing ships and aircraft structures, it is important to design them to satisfy weight reduction and strength. Currently, studies related to topology optimization using 3D printed composite materials are being actively conducted to satisfy the weight reduction and strength of the structure. In this study, structural analysis was performed to analyze the applicability of 3D printed composite materials to the flight control surface, one of the parts of an aircraft or unmanned aerial vehicle. The optimal topology shape of the flight control surface for the bending load was analyzed by considering three types (hexagonal, rectangular, triangular) of the topology shape of the flight control surface. In addition, the bending strength of the flight control surface was analyzed when four types of reinforcing materials (carbon fiber, glass fiber, high-strength high-temperature glass fiber, and kevlar) of the 3D printed composite material were applied. As a result of comparing the three-point bending test results with the finite element method results, it was confirmed that the flight control surface with hexagonal topology shape made of carbon fiber and Kevlar had excellent performance. And it is judged that the 3D printed composite can be sufficiently applied to the flight control surface.

Effects of Dietary Protein Level and Supplementation of Conjugated Linoleic Acid on Growth Performance and Meat Quality Parameters in Finishing Pigs (사료 중 단백질 수준 및 CLA(Conjugated Linoleic Acid) 첨가가 비육돈의 생산성 및 육질특성에 미치는 영향)

  • Moon, Hong-Kil;Lee, Sung-Dae;Jung, Hyun-Jung;Kim, Young-Hwa;Park, Jun-Cheol;Ji, Sang-Yun;Kim, Chong-Dae;Kwon, Oh-Sub;Kim, In-Cheul
    • Journal of Animal Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.695-704
    • /
    • 2008
  • This study was conducted to investigate effects of dietary crude protein(CP) level and supplementation of conjugated linoleic acid(CLA) on growth performances and meat quality parameters in finishing pigs. The experiment was designed using protein levels(11.3%, 16.0%) and CLA levels(0%, 2.5%) according to 2×2 factorial design. A total of forty-eight pigs [(Landrace×Yorkshire)×Duroc] with an average initial weight of 79±1kg were allotted to one of four dietary treatments. Each treatment had four replications of three pigs per replicate. Final body weight(P<0.05) and average daily gain(P<0.01) were lower in 11.3% CP treatments than in 16.0% CP treatments, while feed/gain was high(P<0.01) in 11.3% CP treatments compared with 16.0% CP treatments. Carcass weight was lighter in 11.3% CP treatments(P<0.001) and CLA 2.5% treatments(P<0.01) than in 16.0% CP and CLA 0% treatments, respectively. A significant interaction between CP and CLA on carcass weight was observed(P<0.01), where supplementation of 2.5% CLA to finishing diets decreased carcass weight in 16.0% CP treatments, while no difference was found in 11.3% CP treatments. Backfat thickness was thinner in 11.3% CP treatments and CLA 2.5% treatments than in 16.0% CP and CLA 0% treatments, respectively(P<0.05). A significant interaction between CP and CLA on backfat thickness was observed(P<0.001), where supplementation of 2.5% CLA to finishing diets decreased backfat thickness in 16.0% CP treatments, while no difference was found in 11.3% CP treatments. Marbling score and intramuscular fat contents were higher in 11.3% CP treatments than in 16.0% CP treatments(P<0.01). In conclusion, feeding of protein-deficient diets in finishing pigs could produce favorable pork with high marbling score and thinner backfat. On the other hand, supplementation of CLA was considered to decrease backfat thickness when diets with optimal level of crude protein were fed to finishing pigs.

Characteristic study and optimization of culture conditions for Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal (Bacillus amyloliquefaciens SRCM 100731의 반려 동물용 프로바이오틱스 소재로서의 특성 규명 및 배양 조건 최적화)

  • Ryu, Myeong Seon;Yang, Hee-Jong;Jeong, Su-Ji;Seo, Ji Won;Ha, Gwangsu;Jeong, Seong-Yeop;Jeong, Do-Youn
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.384-397
    • /
    • 2018
  • The aim of this study is to screen the strains of Bacillus spp. possessing safety, probiotic activity, and so on, which can be utilized as probiotic resource for using the feed and supplement food of companion animal. About 300 isolates were isolated from traditional Korean sauces, four isolates that did not have or produce the six kinds of B. cereus type vomiting and diarrhea toxin genes, ${\beta}$-hemolytic, and three kinds of carcinogenic enzymes were selected. Antibiotic gene retention, cell surface hydrophobicity, antibiotic sensitivity, and glucose utilization were analyzed for four isolates, and finally SRCM 100731 was selected. SRCM 100731 was named as Bacillus amyloliquefaciens SRCM 100731 16S rRNA sequencing analysis, and carried out optimization of cell growth for industrial applications such as pet food and feed. The effects of 14 different components on cell growth were investigated and three significant positive factors, molasses, sodium chloride, and potassium chloride were selected as the main factors based on a Plackett-Burman design. In order to find out optimal concentration on each constituent, we carried out central composite design. The predicted optimized concentrations were 7% molasses, 1.1% sodium chloride, 0.5% potassium chloride. Finally, an overall about 7-fold increase in dry cell weight yield ($12.6625{\pm}0.0658g/L$) was achieved using the optimized medium compared with the non-optimized medium ($1.8273{\pm}0.0214g/L$). This research is expected to be highly utilized in the growing pet industry by establishing optimal cultivation conditions for industrial application as well as screening Bacillus amyloliquefaciens SRCM 100731 as probiotic resource for companion animal.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

A Kinetic Studies of the Pyrolysis of Waste Plastic Based on the Thermogravimetic Analyses (폐플라스틱의 열분해 시 열중량 분석 및 동역학 연구)

  • Jung, Won Hak;Hwang, Hyeon Uk;Kim, Myung Gyun;Sun, JianFeng;Mutua, Nzioka Antony;Kim, Young Ju
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.15-21
    • /
    • 2015
  • Waste plastic differs in its speed of combustion owing to its variety in composition as well as kinds of plastic. This study is aimed at examining the thermal weight analysis and determination of its kinetics in order to derive the design element in pyrolysis of RPF (Refused Plastic Fuel) as the plastic solid fuel. Based on the result of TGA (Thermogravimetric analysis), kinetic characteristics were analyzed by using Kissinger method which are the most common method for obtaining activation energy, and experimental conditions of TGA were set as follows: in a nitrogen atmosphere, gas flow rate of 20 ml/min, heating rate of $5{\sim}50^{\circ}C/min$, and maximum hottest temperature of $800^{\circ}C$. The method used for determining the property of waste plastic when thermally decomposed was thought feasible as the basic data in deciding the performance, design, and optimal operating condition of the reactor in the actual reactor.

Optimization of Reinforcement of Thin-Walled Structures for a Natural Frequency (고유진동수를 고려한 박판 구조물의 보강재 최적설계)

  • Lim O-Kaung;Jeong Seung-Hwan;Choi Eun-Ho;Kim Dae-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.195-202
    • /
    • 2006
  • Thin-walled structures are efficiently utilized an automobiles, aircraft, satellite and ship as well as needed light weight simultaneously. This paper presents new shape of automobile hood reinforcement that rotating parts as engine, transmission are protected by thin-walled structures. The automobile hood is concerned about the resonance occurs due to the frequency of the rotating parts. The hood must be designed by supporting the stiffness of design loads and considering the natural frequencies. Hence, it is sustained the stiffness and considered the vibration by resonance. It is deep related to ride. Therefore, the topology, shape and size optimization methods are used to design the automobile hood. Topology technique is applied to determine the layout of a structural component optimum size with maximized natural frequency by volume reduction. In this research, The optimal structure layout of an inner reinforcement of an automobile hood for the natural frequency of a designated mode is obtained by using topology optimization method. The optimum size and the optimum shape are determined by PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm.

Effects of Timing of Initial Cutting and Subsequent Cutting on Yields and Chemical Compositions of Cassava Hay and Its Supplementation on Lactating Dairy Cows

  • Hong, N.T.T.;Wanapat, M.;Wachirapakorn, C.;Pakdee, P.;Rowlinson, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1763-1769
    • /
    • 2003
  • Two experiments were conducted to examine the production and quality of cassava hay and its utilization in diets for dairy cows. In experiment I, a $2{\times}2$ Factorial arrangement in a randomized complete block design with 4 replications was carried out to determine the effects of different initial (IC) and subsequent cutting (SC) on yield and composition of cassava plant. The results revealed that cassava could produce from 4 to 7 tonne of DM and 1.2 to 1.6 tonne of CP for the first six months after planting. CP content in cassava plant ranged from 20.8 to 28.5% and was affected by different SC regimes. Condensed tannin in cassava foliage ranged from 4.9 to 5.5%. Initial cutting at 2 months with subsequent cutting at 2 month intervals was the optimal to obtain high dry matter and protein yield. In the second experiment, five crossbred Holstein-Friesian cows in mid lactation with an initial live-weight of 505${\pm}6.1kg$ and average milk yield of 10.78${\pm}1.2kg/d$ were randomly assigned in a $5{\times}5$ Latin square design to study the effects of 2 levels of CH (1 and 2 kg/hd/d) and concentrate (1 to 2 kg of milk and 1 to 3 kg of milk) on milk yield and milk composition. The results showed that cassava hay increased rumen $NH_3-N$ and milk urea nitrogen (MUN) (p<0.05). Cassava hay tended to increase milk production and 4% FCM. Milk protein increased in cows fed cassava hay (p<0.05). Moreover, cassava hay could reduce concentrate levels in dairy rations thus resulting in increased economic returns. Cassava hay can be a good source of forage to reduce concentrate supplementation and improve milk quality.