• 제목/요약/키워드: Optimal design weight

검색결과 693건 처리시간 0.06초

인공위성 시스템의 신뢰도 최적 설계에 관한 연구(아리랑위성 2호의 MSC 시스템 구조를 중심으로) (A Study on Reliability Optimal Design of Satellite system(Based on MSC System's structure of KOMPSAT-2))

  • 김흥섭;전건욱
    • 한국항공우주학회지
    • /
    • 제39권12호
    • /
    • pp.1150-1159
    • /
    • 2011
  • 신뢰도란 임의 시스템이 주어진 운용환경 하에서 의도한 기간 동안 의도된 기능을 정상적으로 수행할 확률로 정의된다. 신뢰도-중복 최적화 문제(RROP)는 비용, 무게 등의 제약내에서 시스템의 신뢰도를 최대화할 수 있는 최적의 부품을 선택하고, 부품수와 중복전략(활성/대기중복)을 결정하는 문제이다. 본 연구에서는 아리랑위성 2호의 다채널광학카메라(MSC) 시스템의 설계 구조를 바탕으로 RROP의 수리모형을 제시하고, NP-hard인 RROP의 해법으로써 병렬 개체군집최적화(PPSO) 알고리즘을 제안하였다. RROP 예제의 수치실험 결과는 계획된 수명기간에서 신뢰도를 최대화하는 시스템의 설계 구조를 제시한다.

전륜구동형 승용차의 엔진마운트 시스템 최적설계 (An Optimal Design of the Front Wheel Drive Engine Mount System)

  • 김민수;김한성;최동훈
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

다목적함수(多目的函數) 최적화(最適化) 기법(技法)에 의한 격자형(格子型) 구조물(構造物)의 최적설계(最適設計) (Computer-Aided Optimal Grillage Design by Multiple Objective Programming Method)

  • 임상전;양영순
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.11-20
    • /
    • 1988
  • From the engineering point of view, a synthesis as well as an analysis technique is explored to search for the improved design of grillage which is common in ship structure. As an approximate analysis method for the grillage, an interaction reaction method is developed and compared with the finite element method. It is found that the discrepancy between these two methods is so negligible that the percent method could be used effectively for the grillage analysis. As an optimization technique, a feasible direction method could be used is combined with the intersection reaction method in order to design a minimum weight optimal grillage. The feasible direction method shows a good numerical performance although it requires more calculation times compared with the direct search method. Finally, the application of multiple objective optimization method to grillage is investigated in order to resolve conflicts existed between the multiple objectives which is a common characteristic of structure design problem. Goal programming method is extended to handle a nonlinear property of constraints and objective functions. It seems that the nonlinear goal programming could help not only to establish a relative importance of each objective, but also enable the designer to choose the best combination of design variables.

  • PDF

유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구 (The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms)

  • 백운태;성활경
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF

Optimal Design of a Coudé Mirror Assembly for a 1-m Class Ground Telescope

  • Jaehyun Lee;Hyug-Gyo Rhee;Eui Seung Son;Jeon Geon Kang;Ji-Young Jeong;Pilseong Kang
    • Current Optics and Photonics
    • /
    • 제7권4호
    • /
    • pp.435-442
    • /
    • 2023
  • These days, the size of a reflective telescope has been increasing for astronomical observation. An additional optical system usually assists a large ground telescope for image analysis or the compensation of air turbulence. To guide collimated light to the external optical system through a designated path, a coudé mirror is usually adopted. Including a collimator, a coudé mirror of a ground telescope is affected by gravity, depending on the telescope's pointing direction. The mirror surface is deformed by the weight of the mirror itself and its mount, which deteriorates the optical performance. In this research, we propose an optimization method for the coudé mirror assembly for a 1-m class ground telescope that minimizes the gravitational surface error (SFE). Here the mirror support positions and the sizes of the mount structure are optimized using finite element analysis and the response surface optimization method in both the horizontal and vertical directions, considering the telescope's altitude angle. Throughout the whole design process, the coefficients of the Zernike polynomials are calculated and their amplitude changes are monitored to determine the optimal design parameters. At the same time, the design budgets for the thermal SFE and the mass and size of the mount are reflected in the study.

FRP 기계적 물성을 고려한 복합소재 선체구조 적층판 경량화 설계 (Laminate Weight Optimization of Composite Ship Structures based on Experimental Data)

  • 오대균;;노재규;정숙현
    • 대한조선학회논문집
    • /
    • 제57권2호
    • /
    • pp.104-113
    • /
    • 2020
  • The study aims to improve the previous theory-based algorithm on the lightweight design of laminate structures of a composite ship based on the mechanical properties of fiber, resin, and laminates obtained from experiments. From a case study on using a hydrometer to measure the specific gravity of e-glass fiber woven roving fabric/polyester resin used as the raw material for the hull of a 52 ft composite ship, the equation for calculating the weight of laminate was redefined, and the relationship between decreasing mechanical properties and increasing glass content was determined from the results of material testing according to ASTM D5083 and ASTM D790. After applying these experimental data to the existing algorithm and improving it, a possible laminate design that maximizes the specific strength of the composite material was confirmed. In a case study that applied the existing algorithm based on rules, the optimal lightweight design of composite structures was achieved when the weight fraction of e-glass fiber was increased by 57.5% compared with that in the original design, but the improved algorithm allowed for an increase of only 17.5%.

Comparison between uniform deformation method and Genetic Algorithm for optimizing mechanical properties of dampers

  • Mohammadi, Reza Karami;Mirjalaly, Maryam;Mirtaheri, Masoud;Nazeryan, Meissam
    • Earthquakes and Structures
    • /
    • 제14권1호
    • /
    • pp.1-10
    • /
    • 2018
  • Seismic retrofitting of existing buildings and design of earth-quake resistant buildings are important issues associated with earthquake-prone zones. Use of metallic-yielding dampers as an energy dissipation system is an acceptable method for controlling damages in structures and improving their seismic performance. In this study, the optimal distribution of dampers for reducing the seismic response of steel frames with multi-degrees freedom is presented utilizing the uniform distribution of deformations. This has been done in a way that, the final configuration of dampers in the frames lead to minimum weight while satisfying the performance criteria. It is shown that such a structure has an optimum seismic performance, in which the maximum structure capacity is used. Then the genetic algorithm which is an evolutionary optimization method is used for optimal arrangement of the steel dampers in the structure. In continuation for specifying the optimal accurate response, the local search algorithm based on the gradient concept has been selected. In this research the introduced optimization methods are used for optimal retrofitting in the moment-resisting frame with inelastic behavior and initial weakness in design. Ultimately the optimal configuration of dampers over the height of building specified and by comparing the results of the uniform deformation method with those of the genetic algorithm, the validity of the uniform deformation method in terms of accuracy, Time Speed Optimization and the simplicity of the theory have been proven.

가변 샌드위치 구조물의 형상최적설계 (Shape Optimal Design of Variable Sandwich Structure)

  • 박철민;박경진;이완익
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2162-2171
    • /
    • 1993
  • Geneal Structure optimization is utilized to minimize the weight of structures while satisfying constraints imposed on stress, displacements and natural frequencies, etc. Sandwich structures consist of inside core and outside face sheets. The selected sandwich structures are isotropic sandwich beams and isotropic sandwich plate. The face sheets are treated as membrane and assumed to carry only tensions, while the core is assumed to carry only transverse shear. The characteristic of the varying area are considered by adding the projected component of the tension to the transverse shear. The bending theory and energy method are adopted for analyzing sandwich beams and plates, respectively. In the optimization process, the cost function is the weight of a structure, and a deflection and stress constraints are considered. Design variable are thickness and tapering coefficients which determine the shape of a structure. An existing optimization code is used for solving the formulated problems.

원공배열 결정에 최적기준법에 의한 전동차 크로스 빔의 위상최적화에 관한 연구( I ) (A Study on the Topology Optimization of Electric Vehicle Cross beam using an Optimality Criteria Method in Determination of Arranging Hole( I ))

  • 전형용
    • 한국정밀공학회지
    • /
    • 제19권11호
    • /
    • pp.137-145
    • /
    • 2002
  • Electric vehicle body has to be subjected to uniform load and requires auxiliary equipment such as air pipe and electric wire pipe. Especially, the cross beam supports the weight of passenger and electrical equipments. a lightweight vehicle body is salutary to save operating costs and fuel consumption. Therefore this study is to perform the size and the shape optimization of crossbeam for electric vehicle using the method of topology optimization to introduce the concept of homogenization based on optimality criteria method which is efficient for the problem having the number of design variables and a few boundary condition. this provides the method to determine the optimum position and shape of circular hole in the cross beam and then can achieve the optimal design to reduce weight.

상용 CAM시스템을 활용한 금형 형상부(CORE/CAVITY)의 가공에 관한 연구 (A Study on the Machining of Die Profile Using the CAM System)

  • 한규택
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.69-74
    • /
    • 2003
  • The purpose of the present paper is to investigate about the machining of profile (core/cavity) of mold die using the commercial CAM system. Recently the requirement of the light weight and high performance of automobiles has Increased. The weight of the automobile is very important in the viewpoint of the fuel and traveling performance. The optimal design technique, material technique, the process design for parts and specially, die machining technique need to be developed for increasing productivity and reducing production time of the automobile parts. In this study, the effect of machining condition on precision of die profile is investigated by experimental observation and analysis. The results will be reflected for development of the precision die of the automobile.

  • PDF