• 제목/요약/키워드: Optimal design structure

검색결과 1,472건 처리시간 0.035초

Optimal Design of Tall Residential Building with RC Shear Wall and with Rectangular Layout

  • Jinjie, Men;Qingxuan, Shi;Zhijian, He
    • 국제초고층학회논문집
    • /
    • 제3권4호
    • /
    • pp.285-296
    • /
    • 2014
  • The objective of optimization is to present a design process that minimizes the total material consumption while satisfying current codes and specifications. In the research an optimization formulation for RC shear wall structures is proposed. And based on conceptual design methodology, an optimization process is investigated. Then optimal design techniques and specific explanations are introduced for residential buildings with shear wall structure, especially for that with a rectangular layout. An example of 30-story building is presented to illustrate the effectiveness of the proposed optimal design process. Furthermore, the influence of aspect ratio on the concrete consumption and the steel consumption of the superstructure are analyzed for this typical RC shear wall structure; and their relations are obtained by regressive analysis. Finally, the optimal material consumption is suggested for the residential building with RC shear wall structure and with rectangular layout. The relation and the data suggested can be used for guiding the design of similar RC shear wall structures.

설계활동의 역사적 흐름과 새로운 개념에 의한 구조최적설계 소프트웨어 소개 (A Historical Review of Design Activities and a New-Concept Software System for Structural Optimization)

  • 곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.17-21
    • /
    • 2001
  • Theories for optimal design and optimization algorithms have long been well developed. In industries, however, they are not well practiced. To make them work for industry, a new philosophy is necessary and an integration of various software systems required. A review of the history in the aspect of optimal design software is made and a newly developed code DS-Structure is introduced.

  • PDF

Combined Optimal Design of Flexible Beam with Sliding Mode Control System

  • Park, Jung-Hyen;Kim, Soon-Ho
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2003
  • In order to achieve the desired lightweight and robust design of a structure, it is preferable to design a structure and its control system, simultaneously, which is termed the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as the optimum design method, An initial load and a time-varying disturbance were applied at the free end of the beam. Sliding mode control was selected, due to its insensitivity to the disturbance, compared with other modes. It is known that the sliding mode control is robust to the disturbance and is uncertain, only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane, and the objective function of the optimum switching hyper plane was assumed to be the objective of the control system. The total weight of the structure was treated as a constraint, and the cross sectional areas of the beam were considered as design variables, the result being a nonlinear programming problem. To solve it, the sequential linear programming method was applied. As a result of the optimum design, the effect of attenuating vibrations has been substantially improved. Moreover, the lightweight design of the structure became possible as a result of the relationship of the weight of the structure to the control objective function.

목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계 (Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability)

  • 옥승용;박관순;송준호;고현무
    • 한국지진공학회논문집
    • /
    • 제12권2호
    • /
    • pp.9-22
    • /
    • 2008
  • 이 논문에서는 구조물의 내진성능 향상을 위한 방법으로서 구조부재 및 수동형 감쇠기의 통합최적설계기법을 제시한다. 이는 구조부재 및 감쇠기의 최적배치를 다루는 최적화기법이다. 통합시스템의 최적설계를 위하여 다목적최적화기법을 도입하고, 이를 보다 효율적으로 다루기 위하여 목표신뢰성 제한조건을 갖는 다목적최적화문제로 재구성하였다. 수치해석 예제를 통하여 다양한Pareto 최적해를 제시하였으며, 이들이 기존 설계방법에 상응하는 순차적 설계방법 및 가중합방법에 따른 단일목적함수 최적화방법을 포괄함을 검증하였다. 여러 Pareto 최적해로부터 강성 및 감쇠장치의 사용량을 달리하는 3가지 대표설계안을 선택하고 이들의 내진성능을 다양한 지진하중에 대하여 비교 분석하였다. 이로부터 제시하는 방법이 구조물의 내진성능 향상을 위한 설계방법으로서 효율적으로 적용될 수 있을 것으로 기대된다.

근사모델과 후처리를 이용한 트러스 구조물의 이산 치수설계 (Discrete Sizing Design of Truss Structure Using an Approximate Model and Post-Processing)

  • 이권희
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.27-37
    • /
    • 2020
  • Structural optimization problems with discrete design variables require more function calculations (or finite element analyses) than those in the continuous design space. In this study, a method to find an optimal solution in the discrete design of the truss structure is presented, reducing the number of function calculations. Because a continuous optimal solution is the Karush-Kuhn-Tucker point that satisfies the optimality condition, it is assumed that the discrete optimal solution is around the continuous optimum. Then, response values such as weight, displacement, and stress are predicted using approximate models-referred to as hybrid metamodels-within specified design ranges. The discrete design method using the hybrid metamodels is used as a post-process of the continuous optimization process. Standard truss design problems of 10-bar, 25-bar, 15-bar, and 52-bar are solved to show the usefulness of this method. The results are compared with those of existing methods.

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties

  • Assefa Jonathan Dereje;Jinkoo Kim
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.249-260
    • /
    • 2023
  • The uncertainties involved in structural performances are of importance when the optimum number and property of seismic retrofit devices are determined. This paper proposes a seismic retrofit design framework for asymmetric soft-first-story buildings, considering uncertainties in the soil condition and seismic retrofit device. The effect of the uncertain parameters on the structural performance is used to find a robust and optimal seismic retrofit solution. The framework finds a robust and optimal seismic retrofit solution by finding the optimal locations and mechanical properties of the seismic retrofit device for different realizations of the uncertain parameters. The structural performance for each realization is computed to evaluate the effect of the uncertainty parameters on the seismic performance. The framework utilizes parallel processing to decrease the computationally intensive nonlinear dynamic analysis time. The framework returns a robust design solution that satisfies the given limit state for every realization of the uncertain parameters. The proposed framework is applied to the seismic retrofit design of a five-story asymmetric soft-first-story case study structure retrofitted with a viscoelastic damper. Robust optimal parameters for retrofitting a structure to satisfy the limit state for the different realizations of the uncertain parameter are found using the proposed framework. According to the performance evaluation results of the retrofitted structure, the developed framework is proved effective in the seismic retrofit of the asymmetric structure with inherent uncertainties.

유전 알고리즘을 적용한 잠수함 압력선체 최적 구조설계 (Optimal Design of Submarine Pressure Hull Structures Using Genetic Algorithm)

  • 조윤식;백점기
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.378-386
    • /
    • 2017
  • In this paper, a method is presented for the optimal design of submarine pressure hull structures by taking advantage of genetic algorithm techniques. The objective functions and design constraints in the process of structural optimization are based on the ultimate limit states of hull structures. One of the benefits associated with the utilization of genetic algorithm is that the optimization process can be completed within short generations of design variables for the pressure hull structure model. Applied examples confirm that the proposed method is useful for the optimal design of submarine pressure hull structures. Details of the design procedure with applied examples are documented. The conclusions and insights obtained from the study are summarized.

유전자 알고리즘을 이용한 닐센아치교의 최적설계기법 (Opitmal Design Technique of Nielsen Arch Bridges by Using Genetic Algorithm)

  • 이광수;정영수
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.361-373
    • /
    • 2009
  • 유전자 알고리즘을 이용한 닐센아치교의 최적설계기법을 이 논문에서 제시하였다. 설계 매개변수로는 닐센아치교의 아치-라이즈비와 강중비에 대해서 최적화기법을 적용하여 각각의 거동을 분석하고, 적정성을 평가하여 최적의 매개변수 값을 결정하였다. 매개변수의 결정은 구조물의 안전성과 사용성 그리고 경제성에 중요한 설계인자로서 정형화가 요구된다. 이를 위해 최적화 기법으로 전역 최적해 탐색능력이 우수한 유전자 알고리즘을 사용하였으며, 설계 목적함수로는 구조물의 총 중량을 사용하였고, 제약조건으로는 변위, 응력, 시공성 제약조건을 두었다. 구조해석은 미소변위이론에 의한 탄성해석을 수행하여 유전자 알고리즘과 조합하여 병렬연산으로 수행시간을 단축시켰다. 이 연구에서 개발된 최적설계기법을 사용하여 최적의 아치-라이즈비와 강중비, 최적설계영역을 제시 하였으며 실무에 적용할 수 있도록 하였다.

선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법 (Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure)

  • 권혁;조대승
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.