• Title/Summary/Keyword: Optimal cross section

Search Result 206, Processing Time 0.021 seconds

Dynamic Optimal Shapes of Simple Beam-Columns with Constant Volume (일정체적 단순지지 보-기둥의 동적 최적단면)

  • Lee, Byoung Koo;Park, Kwang Kyou;Mo, Jeong Man;Lee, Sang Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.221-228
    • /
    • 1997
  • The main purpose of this paper is to determine the dynamic optimal shapes of simple beam-columns with the constant volume. The parabolic function is chosen as the variable equation for the depth of regular polygon cross-section. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The Runge-Kutta and Regula-Falsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the simple beam-columns are analysed and the numerical results of this study are shown in tables and figures.

  • PDF

A Structural Analysis of the SNF(Spent Nuclear Fuel) Disposal Canister with the SNF Basket Section Shape Change for the Pressurized Water Reactor(PWR) (고준위폐기물다발의 단면형상 변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.37-49
    • /
    • 2012
  • A structural model of the SNF(spent nuclear fuel) disposal canister for the PWR(pressurized water reactor) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed through various structural safety evaluations. The SNF disposal baskets of this canister model have the array type whose four square cross section baskets stand parallel to each other and symmetrically with respect to the center of the canister section. However, whether this developed structural model of the SNF disposal canister is optimal is not determinable yet. Especially, there is still a problem in weight-reduction of the canister. The cross section shape of the SNF basket should be changed to solve this problem. There are two ways in changing the cross section shape of the SNF basket; the one is to rotate the cross section itself and the other is to change the cross section shape as other shape different from the square cross section. The previous study shows that the canister with $30{\sim}35^{\circ}$ rotated basket array is structurally more stable than the canister with un-rotated parallel basket array. However, whether this canister with rotated basket array is optimal is not either determinable as yet, because it is not revealed that the canister with other cross section different from the square cross section is structurally more stable than other canisters. Therefore, the structural analysis of the SNF disposal canister with other cross section shape which is also symmetric with respect to the canister center planes is very necessary. The structural analysis of the canister with various cross section shape basket array in which each basket is arrayed symmetrically with respect to the center planes is carried out in this paper. The structural analysis result shows that the SNF disposal canister with circular cross section shape baskets located symmetrically with respect to the center of the canister section is structurally more stable than the previously developed SNF disposal canister with the parallel basket array.

Reliability-Based Structural Optimization of Transmission Tower (신뢰성에 기초한 철탑구조물의 최적화에 관한 연구)

  • 김성호;김상효;황학주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF

Analysis of aerodynamic characteristics for the selection of cross-section to the TBM railway tunnels (TBM 철도터널 단면선정을 위한 공기역학적 특성 분석)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.6
    • /
    • pp.625-635
    • /
    • 2013
  • Although the TBM method is mainly adopted in overseas market including the Europe, etc, the method scarcely adopted in domestic market. For highly enhancing applications of the TBM method for railway, It is needed to select the optimal cross-section considering design elements of civil engineering and aerodynamic effects. Also, it is needed to establish plan of proper section as well as reviewing aerodynamic effects and consideration about civil engineering elements such as length of tunnel, speed of railway, height of whole lines and size of utility tunnel, etc. Even though it should be recently considered high-speed railway tunnels and required to be standard establishments in aerodynamic reviews, it is being applied to be criteria of inconsistent pneumatic analysis owing to be not related with domestic standards. In this study, therefore, we are willing to establishment of domestic and foreign aerodynamic standards and investigate correlation between optimal cross-section and aerodynamic effects of TBM railway tunnels.

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.

A Study on Mechanical Shearing Process for Tailored Blank Welding (테일러드블랭크 용접을 위한 전단 공정 연구)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

Theoretical analysis of rotary hyperelastic variable thickness disk made of functionally graded materials

  • Soleimani, Ahmad;Adeli, Mohsen Mahdavi;Zamani, Farshad;Gorgani, Hamid Haghshenas
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • This research investigates a rotary disk with variable cross-section and incompressible hyperelastic material with functionally graded properties in large hyperelastic deformations. For this purpose, a power relation has been used to express the changes in cross-section and properties of hyperelastic material. So that (m) represents the changes in cross-section and (n) represents the manner of changes in material properties. The constants used for hyperelastic material have been obtained from experimental data. The obtained equations have been solved for different m, n, and (angular velocity) values, and the values of radial stresses, tangential stresses, and elongation have been compared. The results show that m and n have a significant impact on disk behavior, so the expected behavior of the disk can be obtained by an optimal selection of these two parameters.

Analysis and Optimization of Composite Links (복합재료 링크의 해석 및 최적화)

  • 김수현;강지호;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.103-107
    • /
    • 2003
  • The objective of this thesis is to develop the optimal design of composite links containing complicated cross-section. To accomplish this objective, a composite links structural analysis program was developed. The method of calculating effective modulus of composite beam containing complicated cross-section is proposed. Genetic algorithm was implemented for the optimization method to manipulate the discrete ply angles as the design variables and to utilize its high reliability to find the global optimum. The design variables were the number of plies, the fiber orientations and the stacking sequence. The optimal design of composite links was performed by genetic algorithm to minimize the weight of the structure and to constrain ply failure

  • PDF

Development of Manufacturing Technology for Center Floor Cross Member with Roll Forming Process (롤 포밍 공법을 이용한 고강도 차체 부품 제작 기술 개발)

  • Kim, D.K.;Park, S.E.;Cho, K.R.;Lee, K.H.;Kim, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.297-300
    • /
    • 2009
  • The roll forming process is often used to manufacture long, thin-walled products such as a pipe. The final cross-section is a comparatively simple open-channel, a closed tube section or a complex profile with several bends. In recent years, that process is often applied to the bumper beam in the automotive industries. In this study, a optimal Center Floor Cross Member manufacturing technology, model deign and proper roll-pass sequences can be suggested by forming number of roll-pass and bending angle, and also effects of the process parameters on the final shape formed by roll forming defects were evaluated.

  • PDF