• Title/Summary/Keyword: Optimal coating process

Search Result 115, Processing Time 0.022 seconds

A Study on the Characteristics of Low Temperature sintering Ceramic Siding Using Natural Minerals (천연광물을 활용한 저온소결 세라믹 사이딩의 특성에 관한 연구)

  • Kim, Soon-ho;Choi, Jeong-min
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.149-156
    • /
    • 2019
  • Recently, skyscraper building and apartment fires, which were rapidly spread out from a low floor to a rooftop, have become a frequent occurrence in mass media. This fire problems have a fatal disadvantage that the exterior wall finish of the building emits toxic gas in case of fire by using dry bit method or organic insulating material. Therefore, in order to remedy these problems, many exterior wall finishing construction methods have been proposed, but the current trend is to use existing construction methods due to problems such as economy, weight, and durability. On the other hand, in countries such as Germany and Japan, ceramic sidings are used as exterior finishing material for buildings, which is environmentally friendly, excellent natural beauty, long life, easy maintenance and high-quality exterior materials. However, those ceramic sidings have still the problems such as manufacturing cost and weight problem because of boosting the sintering temperature up to 1,350℃ or more. Also, conventional CRC, MgO, FRP sidings which are composed of pulp, glass fiber and organic materials, have been reports of deformation due to ultraviolet rays, discoloration, corrosion and scattering, surface rupture, lifting and peeling. Therefore, in this study as an alternative to solve this problem, halosite nano kaolin produced in Sancheong in Korea and frit flux were used to satisfy the required properties as ceramic siding using low temperature sintering (below 1,000℃) and lightweight materials such as pearlite. This study aims to design the optimal formulation and process of materials and to study the characteristics of nano-coated ceramic siding material development and to present relevant basic data. The findings show that ceramic siding for nanocoated building materials is excellent as a natural ceramic siding building material. The fire resistance of natural minerals and nano particle refining technology satisfy the bending strength of 80kgf / cm2, the volume ratio of 2.0 and the absorption rate of less than 10.0%.

Optimal Condition for Manufacturing Water Extract from Mandarin Orange Peel for Colored Rice by Coating (유색미 제조용 감귤과피 물추출 균질액의 제조조건 최적화)

  • Seo, Sung-Soo;Youn, Kwang-Sup;Shin, Seung-Ryeul;Kim, Soon-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.884-892
    • /
    • 2003
  • This study was conducted to optimize the water homogenization process of mandarin orange peel for colored rice. Four variables were used to determine the optimum conditions for homogenization speed, time, temperature, and water volume with a five level central composite design and response surface methodology. The process was optimized using the combination of EI and b values of rice coated with water extract of the mandarin orange peel. The effect of water volume was the most significant compared to the other variables on the quality of water homogenate. The regression polynomial model was a suitable (p>0.05) model by lack-of-fit analysis showing high significance. To optimize the process, based on surface response and contour plots, individual contour plots for the response variables were superimposed. The optimum conditions for manufacturing water extract from mandarin orange was with 8,500 rpm homogenization speed, 2.8 min time, $53^{\circ}C$ temperature, and 42 mL water volume with the maximum of restricted variables of EI above 400 and h value above 24.

Fabrication of Visible Light Transmittance-variable Smart Windows Using Phase Retardation Films (위상지연 필름을 이용한 가시광 투과율 가변형 스마트윈도우 제작)

  • Kim, Il-Gu;Yang, Ho-Chang;Park, Young-Min;Hong, Young Kyu;Lee, Seung Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.29-34
    • /
    • 2022
  • A fabrication process of smart windows with controllable visible light transmittance by using retardation films is proposed. The 𝛌/4-phase retardation films that can convert a linearly polarized light into circularly polarized light are achieved through photo-alignment layers and reactive mesogen (RM) coating process. Two sheets of the fabricated retardation films with different orientation angles induced to light transmission mode (45°/-45°) and light blocking mode (45°/45°) for visible wavelength. We evaluated retardation characteristics according to the thickness of the birefringent RM material and found out the optimal condition for the film with 𝚫n·d of 𝛌/4-phase. The proposed structure of the smart window exhibited the light blocking ratio improved by more than 20% in the visible wavelength (380 nm to 780 nm). Finally, it was confirmed that the feasibility of the window structure by applying to a prototype for a smart window with a size of 150 × 150 mm2.

A Study on the Improvement of Skin-affinity and Spreadability in the Pressed Powder using Air Jet Mill Process and Mono-dispersed PMMA (Air Jet Mill 공법과 PMMA의 단분산성이 프레스드 파우더의 밀착성 및 발림성 향상에 대한 연구)

  • Song, Sang Hoon;Hong, Kyong Woo;Han, Jong Seob;Kim, Kyong Seob;Park, Sun Gyoo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • The key quality attributes of the pressed powder, one of base makeup products, are skin-affinity and spreadability. In general, there was a limit to meet skin-affinity and spreadability simultaneously, which are opposite attributes each other. In this study, air jet mill process was tried to satisfy two main properties. Skin-affinity was improved by a wet coating of sericite with a mixture of lauroyl lysine (LL) and sodium cocoyl glutamate (SCG). The application of mono-dispersed polymethyl methacrylate (PMMA) and diphenyl dimethicone/vinyl diphenyl dimethicone/silsesquioxane crosspolymer (DDVDDSC) improved both qualities. Air jet mill process has been mainly applied in the pharmaceutical and food industries, and is a method used for processing powder materials in cosmetic field. In this study, we were able to complete makeup cosmetics with an optimum particle size $6.8{\mu}m$ by combining the air jet mill process at the manufacturing stage. It was confirmed that the Ti element was uniformly distributed throughout the cosmetics by EDS mapping, and that the corners of the tabular grains were rounded by SEM analysis. It is considered that this can provide an effect of improving the spreadability when the cosmetic is applied to the skin by using a makeup tool. LL with excellent skin compatibility and SCG derived from coconut with little skin irritation were wet coated to further enhance the adhesion of sericite. SEM images were analyzed to evaluate effect of the dispersion and uniformity of PMMA on spreadability. With the spherical shapes of similar size, it was found that the spreading effect was further increased when the distribution was homogeneously mono-dispersed. The dispersion and spreadability of PMMA were confirmed by measuring the kinetic friction and optimal content was determined. The silicone rubber powder, DDVDDSC, was confirmed by evaluating the hardness, spreading value, and drop test. Finally, it was found that the dispersion of PMMA and silicone rubber powder affected spreadability. Such makeup cosmetics have excellent stability in drop test while having appropriate hardness, and good stability over time. Taken together, it is concluded that air jet mill process can be utilized as a method to improve skin-affinity and spreadability of the pressed powder.

Optimization for Underwater Welding of Marine Steel Plates (선박용 강판의 수중 용접 최적화에 관한 연구)

  • 오세규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.1
    • /
    • pp.49-59
    • /
    • 1984
  • Optimizing investigation of characteristics of underwater welding by a gravity type arc welding process was experimentally carried out by using six types of domestic coated welding electrodes for welding of domestic marine structural steel plates (KR Grade A-1, SWS41A, SWS41B,) in order to develop the underwater welding techniques in practical use. Main results obtained are summarized as follows: 1. The absorption speed of the coating of domestic coated lime titania type welding-electrode became constant at about 60 minutes in water and it was about 0.18%/min during initial 8 minutes of absorption time. 2. Thus, the immediate welding electrode could be used in underwater welding for such a short time in comparison with the joint strength of in-atmosphere-and on-water-welding by dry-, wet-or immediate-welding-electrode. 3. By bead appearance and X-ray inspection, ilmenite, limetitania and high titanium oxide types of electrodes were found better for underwater-welding of 10 mm KR Grade A-1 steel plates, while proper welding angle, current and electrode diameter were 6$0^{\circ}C$, above 160A and 4mm respectively under 28cm/min of welding speed. 4. The weld metal tensile strength or proof stress of underwater-welded-joints has a quadratic relationship with the heat input, and the optimal heat input zone is about 13 to 15KJ/cm for 10mm SWS41A steel plates, resulting from consideration upon both joint efficiency of above-100% and recovery of impact strength and strain. Meanwhile, the optimal heat input zone resulting from tension-tension fatigue limit above the base metal's of SWS41A plates is 16 to 19KJ/cm. Reliability of all the empirical equations reveals 95% confidence level. 6. The microstructure of the underwater welds of SES41A welded in such a zone has no weld defects such as hydrogen brittleness with supreme high hardness, since the HAZ-bond boundary area adjacent to both surface and base metal has only Hv400 max with the microstructure of fine martensite, bainite, pearlite and small amount of ferrite.

  • PDF