• 제목/요약/키워드: Optimal channel selection

검색결과 90건 처리시간 0.026초

Channel Selection for Spectrum Sharing in Wireless Networks

  • Park, Jae Cheol;Kang, Kyu-Min;Park, Seungkeun
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.952-961
    • /
    • 2016
  • In this paper, we study a spectrum sharing network (SSN) where a spectrum sharing device (SSD) coexists with multiple wireless communication systems (WCSs) in the same channel. The SSD can operate with either a duty cycle (DC) channel access mechanism or a listen-before-talk (LBT) channel access mechanism, whereas WCSs operate with an LBT mechanism. An opportunistic channel selection scheme for the SSD in the SSN is first proposed to minimize the outage probability. The optimal data transmission time for the DC-based SSD is derived to further improve the outage probability. We also derive the exact and closed-form outage probability of the proposed channel selection in the SSN by assuming that the number of WCSs operating in each channel is uniformly distributed. The simulation results show that the proposed channel selection scheme outperforms other channel selection schemes. It was also observed that a DC-based SSD with an optimal data transmission time provides a better outage performance than an LBT-based SSD. As the number of available channels increases, the channel selection scheme plays an important role in minimizing the outage probability of the SSNs.

공간변조 시스템에서 채널 용량 기반 송신 안테나 선택 기술 (Transmit Antenna Selection Technique Based on Channel Capacity for Spatial Modulation Systems)

  • 임한영;정방철
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2521-2526
    • /
    • 2013
  • 본 논문에서는 공간변조 (Spatial Modulation, SM) 시스템에서 다중안테나 채널 용량을 고려한 송신 안테나 선택 기술을 제안하고 그 성능을 분석한다. 각 송신 안테나에서 수신안테나까지의 채널 벡터의 크기에 기반하여 안테나를 선택하는 기존 기술과 비교할 때, 제안하는 기술은 채널용량 자체를 계산하여 전체적인 공간변조 시스템의 용량 증가를 가져온다. 전체 안테나 중 사용할 안테나의 집합을 선택하는 모든 경우를 비교하여 최적의 안테나 집합을 선택하는 최적 방법 (Optimal)을 제시하고, 추가적으로 계산 복잡도를 줄이면서 최적 성능과 유사한 성능을 제공하는 Sub-Optimal 기술을 함께 제시한다. 시뮬레이션을 통하여 제안한 안테나 선택 방법이 기존의 안테나 선택 방법에 비하여 bit error rate(BER) 측면에서 월등한 성능을 제공함을 확인하였다.

An Efficient Channel Selection and Power Allocation Scheme for TVWS based on Interference Analysis in Smart Metering Infrastructure

  • Huynh, Chuyen Khoa;Lee, Won Cheol
    • Journal of Communications and Networks
    • /
    • 제18권1호
    • /
    • pp.50-64
    • /
    • 2016
  • Nowadays, smart meter (SM) technology is widely effectively used. In addition, power allocation (PA) and channel selection (CS) are considered problems with many proposed approaches. In this paper, we will suggest a specific scenario for an SM configuration system and show how to solve the optimization problem for transmission between SMs and the data concentrator unit (DCU), the center that collects the data from several SMs, via simulation. An efficient CS with PA scheme is proposed in the TV white space system, which uses the TV band spectrum. On the basic of the optimal configuration requirements, SMs can have a transmission schedule and channel selection to obtain the optimal efficiency of using spectrum resources when transmitting data to the DCU. The optimal goals discussed in this paper are the maximum capacity or maximum channel efficiency and the maximum allowable power of the SMs used to satisfy the quality of service without harm to another wireless system. In addition, minimization of the interference to the digital television system and other SMs is also important and needs to be considered when the solving coexistence scenario. Further, we propose a process that performs an interference analysis scheme by using the spectrum engineering advanced Monte Carlo analysis tool (SEAMCAT), which is an integrated software tool based on a Monte-Carlo simulation method. Briefly, the process is as follows: The optimization process implemented by genetic evolution optimization engines, i.e., a genetic algorithm, will calculate the best configuration for the SM system on the basis of the interference limitation for each SM by SEAMCAT in a specific configuration, which reaches the solution with the best defined optimal goal satisfaction.

Secure Performance Analysis Based on Maximum Capacity

  • Zheng, Xiuping;Li, Meiling;Yang, Xiaoxia
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1261-1270
    • /
    • 2020
  • The physical security layer of industrial wireless sensor networks in the event of an eavesdropping attack has been investigated in this paper. An optimal sensor selection scheme based on the maximum channel capacity is proposed for transmission environments that experience Nakagami fading. Comparing the intercept probabilities of the traditional round robin (TRR) and optimal sensor selection schemes, the system secure performance is analyzed. Simulation results show that the change in the number of sensors and the eavesdropping ratio affect the convergence rate of the intercept probability. Additionally, the proposed optimal selection scheme has a faster convergence rate compared to the TRR scheduling scheme for the same eavesdropping ratio and number of sensors. This observation is also valid when the Nakagami channel is simplified to a Rayleigh channel.

동작 상상 EEG 분류를 위한 이중 filter-기반의 채널 선택 (A Dual Filter-based Channel Selection for Classification of Motor Imagery EEG)

  • 이다빛;이희재;박상훈;이상국
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.887-892
    • /
    • 2017
  • 뇌-컴퓨터 인터페이스는 정신 작업 동안 다채널에서 생성된 뇌파의 신호를 측정, 분석하여 컴퓨터를 제어하거나 의사를 전달하는 기술이다. 이때 최적의 뇌파 채널 선택은 뇌-컴퓨터 인터페이스의 편의성과 속도뿐만 아니라 정확도 향상을 위해 필요하다. 최적의 채널은 중복 채널들 또는 노이즈 채널들을 제거함으로써 얻는다. 이 논문에서는 최적 뇌파 채널을 선택하기 위해 이중 filter-기반의 채널 선택 방법을 제안한다. 제안한 방법은 먼저 채널들 간의 중복성을 제거하기 위해 spearman's rank correlation을 사용하여 중복 채널들을 제거한다. 그 뒤, F score를 이용하여 채널과 클래스 라벨 간의 적합성을 측정하여 상위 m개의 채널들만을 선택한다. 제안한 방법은 클래스 라벨과 관련되고 중복이 없는 채널들을 사용함으로써 좋은 분류 정확도를 이끌어 낼 수 있다. 제안한 채널 선택 방법은 채널의 수를 상당히 줄임과 동시에 평균 분류 정확도를 향상시켰다.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

협력 통신에서 중첩 변조를 활용한 최적의 중계단 선정 및 적응적 전송률 향상 기법 (An Optimal Relay Selection and Adaptive Throughput Enhancement Scheme Utilizing Superposition Modulation)

  • 강성진
    • 한국통신학회논문지
    • /
    • 제40권10호
    • /
    • pp.1934-1936
    • /
    • 2015
  • 본 논문은 협력 통신에서 중첩변조를 활용한 최적의 중계단 선정 및 적응적 전송률 향상 기법을 제안한다. 중첩변조를 활용한 중계단 선정 신호를 활용해 최적의 중계단을 선정함과 동시에 채널 상태를 추정하여 중첩되는 신호의 수를 결정하여 채널 상태에 따라 적응적으로 전송률을 향상시키는 기법을 제안한다.

Performance analysis of precoding-aided differential spatial modulation systems with transmit antenna selection

  • Kim, Sangchoon
    • ETRI Journal
    • /
    • 제44권1호
    • /
    • pp.117-124
    • /
    • 2022
  • In this paper, the performance of precoding-aided differential spatial modulation (PDSM) systems with optimal transmit antenna subset (TAS) selection is examined analytically. The average bit error rate (ABER) performance of the optimal TAS selection-based PDSM systems using a zero-forcing (ZF) precoder is evaluated using theoretical upper bound and Monte Carlo simulations. Simulation results validate the analysis and demonstrate a performance penalty < 2.6 dB compared with precoding-aided spatial modulation (PSM) with optimal TAS selection. The performance analysis reveals a transmit diversity gain of (NT-NR+1) for the ZF-based PDSM (ZF-PDSM) systems that employ TAS selection with NT transmit antennas, NS selected transmit antennas, and NR receive antennas. It is also shown that reducing the number of activated transmit antennas via optimal TAS selection in the ZF-PDSM systems degrades ABER performance. In addition, the impacts of channel estimation errors on the performance of the ZF-PDSM system with TAS selection are evaluated, and the performance of this system is compared with that of ZF-based PSM with TAS selection.

Energy-Efficient Scheduling with Delay Constraints in Time-Varying Uplink Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • 제10권1호
    • /
    • pp.28-37
    • /
    • 2008
  • In this paper, we investigate the problem of minimizing the average transmission power of users while guaranteeing the average delay constraints in time-varying uplink channels. We design a scheduler that selects a user for transmission and determines the transmission rate of the selected user based on the channel and backlog information of users. Since it requires prohibitively high computation complexity to determine an optimal scheduler for multi-user systems, we propose a low-complexity scheduling scheme that can achieve near-optimal performance. In this scheme, we reduce the complexity by decomposing the multiuser problem into multiple individual user problems. We arrange the probability of selecting each user such that it can be determined only by the information of the corresponding user and then optimize the transmission rate of each user independently. We solve the user problem by using a dynamic programming approach and analyze the upper and lower bounds of average transmission power and average delay, respectively. In addition, we investigate the effects of the user selection algorithm on the performance for different channel models. We show that a channel-adaptive user selection algorithm can improve the energy efficiency under uncorrelated channels but the gain is obtainable only for loose delay requirements in the case of correlated channels. Based on this, we propose a user selection algorithm that adapts itself to both the channel condition and the backlog level, which turns out to be energy-efficient over wide range of delay requirement regardless of the channel model.

Transmit Antenna Selection for Dual Polarized Channel Using Singular Value Decision

  • Lee Sang-yub;Mun Cheol;Yook Jong-gwan
    • 한국통신학회논문지
    • /
    • 제30권9A호
    • /
    • pp.788-794
    • /
    • 2005
  • In this paper, we focus on the potential of dual polarized antennas in mobile system. thus, this paper designs exact dual polarized channel with Spatial Channel Model (SCM) and investigates the performance for certain environment. Using proposed the channel model; we know estimates of the channel capacity as a function of cross polarization discrimination (XPD) and spatial fading correlation. It is important that the MIMO channel matrix consists of Kronecker product dividable spatial and polarized channel. Through the channel characteristics, we propose an algorithm for the adaptation of transmit antenna configuration to time varying propagation environments. The optimal active transmit antenna subset is determined with equal power allocated to the active transmit antennas, assuming no feedback information on types of the selected antennas. We first consider a heuristic decision strategy in which the optimal active transmit antenna subset and its system capacity are determined such that the transmission data rate is maximized among all possible types. This paper then proposes singular values decision procedure consisting of Kronecker product with spatial and polarize channel. This method of singular value decision, which the first channel environments is determined using singular values of spatial channel part which is made of environment parameters and distance between antennas. level of correlation. Then we will select antenna which have various polarization type. After spatial channel structure is decided, we contact polarization types which have considerable cases It is note that the proposed algorithms and analysis of dual polarized channel using SCM (Spatial Channel Model) optimize channel capacity and reduce the number of transmit antenna selection compare to heuristic method which has considerable 100 cases.