• Title/Summary/Keyword: Optimal cathode

Search Result 82, Processing Time 0.041 seconds

A Study on the Thermal Properties of Glass for Effective Salvage Process of Flat Cathode-ray Tube (평면 음극선관의 재생률 향상을 위한 유리재료의 열적 특성에 관한 연구)

  • Park, Sang-Hu;Lee, Bu-Yun;Kim, Won-Jin;Heo, Bo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1988-1994
    • /
    • 2001
  • The CRT(Cathode-ray Tube) of salvage is a process of separating the panel and funnel to recycle a cathode-ray tube. In this paper, the thermal properties of glass for CRT were studied to improve its recycling ratio. In the salvage process, several patterns of breakage, as called 'comer pull', were easily generated on the sealing surface of panel or funnel glass due to the residual tensile stress, which had correlations with some parameters of the manufacturing process of CRT and the initial material properties of glass. Finite element analyses and experimental approaches on the flit sealing process were carried out to obtain the major characteristic of glass related to the residual stress. From this study, it was identified that the thermal expansion coefficient of glass had much influence on the residual stress of panel glass after frit sealing process. Therefore, the optimal conditions of thermal properties for CRT glass were proposed to achieve an effective salvage process. By using these optimal conditions, the size of comer pull on the panel and funnel glass was reduced to 10% level compared with the original size, and the recycling ratio of CRT was increased in the salvage process.

Optimal cell structure of a wall-cathode and wall auxiliary anode for high performance plasma display panel (벽형의 음극 전극과 보조 전극을 갖는 고효율 플라즈마 표시기의 최적 전극 구조에 관한연구)

  • 신범제;정희섭;서정현;황기웅
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.33-42
    • /
    • 1997
  • In this paper, a new structure for a dC plasma display pane(PDP) with a wall-catode and a wall-auxilizry anode has been suggested. The wall-cathode with a sufficient discharge area maximizes the discharge volume. The auxiliary anode surrounding the discharge region makes the effective control of the charged particles possible. We have investigated the cahracteristics of the new cell structure with a 2-dimensional computer simulation and a micro gap discharge system, and compared experimentally with those of previous cell structure. The new cell structure with the wall-cathode and auxiliary wall-anode turned out to have improved luminance, discharge forming time and sustain voltage.

  • PDF

Fabrication of Anode-Supported SOFC Single Cells via Tape-Casting of Thin Tapes and Co-Firing (박막 테이프캐스팅과 동시소성에 의한 연료극 지지형 SOFC 단전지 제조)

  • Moon, Hwan;Kim, Sun-Dong;Hyun, Sang-Hoon;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.788-797
    • /
    • 2006
  • An anode-supported SOFC single cell having $5{\mu}m$ thin electrolyte was fabricated cost-effectively by tape casting, laminating, and co-filing of anode (NiO-YSZ), cathode (LSM-YSZ), and electrolyte (YSZ) components. The optimal slurry compositions of the green tapes for SOFC components were determined by an analysis of the mean diameter, the slurry viscosity, the tensile strength/strain of the green tapes, and their green microstructures. The single cells with a dense electrolyte and porous electrodes could be co-fired successfully at $1325\sim1350^{\circ}C$ by controlling the contents of pore former and the ratio of coarse YSZ and fine YSZ in the anode and the cathode. The single cell co-fired at $1350^{\circ}C$ showed $100.2mWcm^{-2}$ of maximum power density at $800^{\circ}C$ but it was impossible to apply it to operate at low temperature because of low performance and high ASR, which were attributed to formation of the secondary phases in the cathode and the interface between the electrolyte and the cathode.

Optimization study on fuel cell cathode oxygen flow path for Unmanned Aerial Vehicle using computational visualization (전산 가시화를 통한 무인 항공기용 연료전지 양극 산소 유로 최적화 연구)

  • Jeon, Ji-A;Lee, Jae-Jun;Song, Young-Su;Kim, Min-Su;Kim, Gun Woo;Na, Youngseung;Rhee, Gwang Hoon
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • Numerical visualization is conducted to confirm the variation of flow characteristics and pressure drop by the shape of channels on the cathode flow path in hydrogen fuel cells for unmanned aerial vehicles(UAVs). Generally, a light-weight fan is commonly used rather than a heavy air compressor at UAVS. However, in case of blower fan, a large pressure drop in the flow path causes the blocking of the oxygen supply to the fuel cell. Therefore, the uniformity of flow inside the cathode has to be achieved by changing the shape of the cathode. The flow channel, the duct shape, and the diameter of the fan are changed to optimize the flow path. As a result, it is confirmed that the optimal flow path can decrease the velocity difference between the center and outer flow by 1.8%. However, It should be noted that the channel size can increase the pressure drop.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis (다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가)

  • Yoo, Bung Uk;Park, Sung Bin;Kwon, Sang Woon;Kim, Jeong Guck;Lee, Han Soo;Kim, In Tae;Lee, Jong Hyeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.7-17
    • /
    • 2014
  • Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

PH Effect of [Li,La]TiO3 Coating Solution on Electrochemical Property of Li[Ni0.35Co0.3Mn0.35]O2 Cathode ([Li,La]TiO3 코팅용액의 pH에 따른 Li[Ni0.35Co0.3Mn0.35]O2 양극의 전기화학적 특성)

  • Jung, Kwang-Hee;Kim, Seuk-Buom;Park, Yong-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.77-82
    • /
    • 2011
  • The surface of $Li[Ni_{0.35}Co_{0.3}Mn_{0.35}]O_2$ cathode was modified by $[Li,La]TiO_3$ coating using pH controlled coating solution. At low pH values (acidic solution), cathode powders, which is oxides, have a positive surface charge, whereas, they have a negative surface charge at high pH values. As a result, their charge could affect the formation of the coating layer on the surface of cathode powder. To determine the optimal pH value, the surface coating of the pristine powder was carried out at various pH values of the coating solution. The surface morphology of coated samples was characterization by SEM and TEM analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the pH of coating solution.

Dye Decomposition in Seawater using Electro-Fenton Reaction (전기-펜톤 반응을 이용한 해수 중의 염료 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.29 no.4
    • /
    • pp.383-393
    • /
    • 2020
  • To increase electrolysis performance, the applicability of seawater to the iron-fed electro-Fenton process was considered. Three kinds of graphite electrodes (activated carbon fiber-ACF, carbon felt, graphite) and dimensionally stable anode (DSA) electrode were used to select a cathode having excellent hydrogen peroxide generation and organic decomposition ability. The concentration of hydrogen peroxide produced by ACF was 11.2 mg/L and those of DSA, graphite, and carbon felt cathodes were 12.9 ~ 13.9 mg/L. In consideration of durability, the DSA electrode was selected as the cathode. The optimum current density was found to be 0.11 A/㎠, the optimal Fe2+ dose was 10 mg/L, and the optimal ratio of Fe2+ dose and hydrogen peroxide was determined to be 1:1. The optimum air supply for hydrogen peroxide production and Rhodamine B (RhB) degradation was determined to be 1 L/min. The electro-Fenton process of adding iron salt to the electrolysis reaction may be shown to be more advantageous for RhB degradation than when using iron electrode to produce hydrogen peroxide and iron ion, or electro-Fenton reaction with DSA electrode after generating iron ions using an iron electrode.

Study on Plasma Treatment of electrode for CCFL (CCFL 전극의 플라즈마 처리에 관한 연구)

  • Park, Hyun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1308-1312
    • /
    • 2011
  • CCFL(Cold Cathode Fluorescent Lamp)for BLU of LCD and special lighting has been widely utilized. The removal of oxide film formed on electrode of CCFL in manufacturing process is required. In this pape Plasma treatment was carried out to remove the oxide film. To ensure the optimum process, the analysis of sheet resistance, XRD, AFM and solder test was conducted. A minimum sheet resistance and the maximum percentage of the solder coverage ratio were measured in optimal process conditions such as plasma power consumption 600W and processing time of 70 seconds. As the plasma treatment is confirmed to be due to removal of copper oxide, this process is expected to be used as a treatment of electrode for CCFL.

Reduction of Noise and Input Power in Fuel Cell Blower by Controlling Flow Path (연료전지 블로워의 유로 크기에 따른 소비전력과 소음저감 방법)

  • Tak, Bong-Yeol;Kim, Chan-Kyu;Lee, So-A;Jang, Choon-Man
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.90.2-90.2
    • /
    • 2011
  • This paper describes performance enhancement of a fuel cell's blower by controlling flow path. Different duct diameter at the inlet and outlet of the blower is selected for reducing blower noise level and input power. Hole diameter and the number of hole at the check valve are tested to reduce the input power of the blower. Two types of blower, fuel pressurized blower and cathode blower, are considered in the present study. Throughout experimental measurements of the test blowers, it is found that duct diameter is effective to reduce noise level and input power in the fuel cell blower. Noise reduction due to the optimal duct diameter at the outlet is more effective when flow rate is relatively large. That is, cathode blower has larger noise reduction compared to fuel pressurized blower because of larger flower rate. Input power of the blower can be reduced by controlling the hole diameter and the number of hole at the check valve.

  • PDF