• Title/Summary/Keyword: Optimal bus frequency

Search Result 24, Processing Time 0.022 seconds

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

A Study on the Optimal Load Shedding Considering Alleviation of the Line Overload (선로과부하해소를 고려한 최적부하간단에 관한 연구)

  • 송길영;이희영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.381-389
    • /
    • 1987
  • This paper presents a method for optimal load shedding in preserving a system security following abnormal condition as well as a sudden major supply outage. The method takes account of static characteristic of generators control and voltage and system frequency characteristic of loads. The optimization problem is solved by a gradient technique to get the maximal effect by the least quantity of load shedding considering line overloads as well as voltage disturbances and system frequency. The method is illustrated on a 8-bus system. It has been found that the use of the proposed algorithm for model systems alleviate the line overload more efficiently than the former method. It is believed that this method will be useful in security studies and operational planning.

  • PDF

A New Approach to Adaptive Damping Control for Statistic VAR Compensators Based on Fuzzy Logic

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.825-829
    • /
    • 2005
  • This paper presents an approach for designing a fuzzy logic-based adaptive SVC damping In controller for damping low frequency power oscillations. Power systems are often subject to low Frequency electro-mechanical oscillations resulting from electrical disturbances. Generally, power system stabilizers are designed to provide damping against this kind of oscillations. Another means to achieve damping is to design supplementary damping controllers that are equipped with SVC. Various approaches are available for designing such controllers, many of which are based on the concepts of damping torque and others which treat the damping controller design as a generic control problem and apply various control theories on it. In our proposed approach, linear optimal controllers are designed and then a fuzzy logic tuning mechanism is constructed to generate a single control signal. The controller uses the system operating condition and a fuzzy logic signal tuner to blend the control signals generated by two linear controllers, which are designed using an optimal control method. First, we design damping controllers for the two extreme conditions; the control action for intermediate conditions is determined by the fuzzy logic tuner. The more the operating condition belongs to one of the two fuzzy sets, the stronger the contribution of the control signal from that set in the output signal. Simulation studies done on a one-machine infinite-bus and a four-machine two-area test system, show that the proposed fuzzy adaptive damping SVC controller effectively enhances the damping of low frequency oscillations.

  • PDF

A Study on the Optimal Design Fuzzy Type Stabilizing Controller Using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안정화 제어기의 최적설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.326-328
    • /
    • 1998
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. The fuzzy logic controllers has been applied to a power system stabilizing controllers. But the design of a fuzzy logic power system stabilizer relies on empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents the optimal design method of the fuzzy logic stabilizer using the genetic algorithm, which is the optimization method based on the mechanics of natural selection and natural genetics. The proposed method tunes the parameters of the fuzzy logic stabilizer in order to minimize the consuming time during the design process. In this paper, the proposed method tunes the shape of membership function of the fuzzy variables. The proposed system is applied to the one-machine infinite-bus model of a power system. Through the case study, the efficiency of the fuzzy stabilizing controller tuned by genetic algorithm is verified.

  • PDF

Reviews of Bus Transit Route Network Design Problem (버스 노선망 설계 문제(BTRNDP)의 고찰)

  • Han, Jong-Hak;Lee, Seung-Jae;Lim, Seong-Su;Kim, Jong-Hyung
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.35-47
    • /
    • 2005
  • This paper is to review a literature concerning Bus Transit Route Network Design(BTRNDP), to describe a future study direction for a systematic application for the BTRNDP. Since a bus transit uses a fixed route, schedule, stop, therefore an approach methodology is different from that of auto network design problem. An approach methodology for BTRNDP is classified by 8 categories: manual & guideline, market analysis, system analytic model. heuristic model. hybrid model. experienced-based model. simulation-based model. mathematical optimization model. In most previous BTRNDP, objective function is to minimize user and operator costs, and constraints on the total operator cost, fleet size and service frequency are common to several previous approach. Transit trip assignment mostly use multi-path trip assignment. Since the search for optimal solution from a large search space of BTRNDP made up by all possible solutions, the mixed combinatorial problem are usually NP-hard. Therefore, previous researches for the BTRNDP use a sequential design process, which is composed of several design steps as follows: the generation of a candidate route set, the route analysis and evaluation process, the selection process of a optimal route set Future study will focus on a development of detailed OD trip table based on bus stop, systematic transit route network evaluation model. updated transit trip assignment technique and advanced solution search algorithm for BTRNDP.

A Study on the Optimal Design Fuzzy Type Stabilizing Controller using Genetic Algorithm (유전 알고리즘을 이용한 퍼지형 안전화 제어기의 최적 설계에 관한 연구)

  • Lee, Heung-Jae;Lim, Chan-Ho;Yoon, Byong-Gyu;Lim, Hwa-Young;Song, Ja-Youn
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1382-1387
    • /
    • 1999
  • This paper presents an optimal fuzzy power system stabilizer to damp out low frequency oscillation. So far fuzzy controllers have been applied to power system stabilizing controllers due to its excellent properties on the nonlinear systems. But the design process of fuzzy logic power system stabilizer requires empirical and heuristic knowledge of human experts as well as many trial-and-errors in general. This paper presents and optimal design method of the fuzzy logic stabilizer using the genetic algorithm. Non-symmetric membership functions are optimally tuned over an evaluation function. The present inputs of fuzzy stabilizer are torque angle error and the change of torque angle error without loss of generality. The coding method used in this paper is concatenated binary mapping. Each linguistic fuzzy variable, defined as the peak of a membership function, is assigned by the mapping from a minimum value to a maximum value using eight bits. The tournament selection and the elitism are used to keep the worthy individuals in the next generation. The proposed system is applied to the one-machine infinite-bus model of a power system, and the results showed a promising possibility.

  • PDF

Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

  • Yao, Wei;Jiang, L.;Fang, Jiakun;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.27-36
    • /
    • 2014
  • This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal in each sampling interval. Case studies are undertaken on a two-area four-machine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided.

A novel approach for optimal DG allocation in distribution network for minimizing voltage sag

  • Hashemian, Pejman;Nematollahi, Amin Foroughi;Vahidi, Behrooz
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.55-73
    • /
    • 2019
  • The cost incurred by voltage sag effect in power networks has always been of important concern for discussions. Due to the environmental constraints, fossil fuel shortage crisis and low efficiency of conventional power plants, decentralized generation and renewable based DG have become trends in recent decades; because DGs can reduce the voltage sag effect in distribution networks noticeably; therefore, optimum allocation of DGs in order to maximize their effectiveness is highly important in order to maximize their effectiveness. In this paper, a new method is proposed for calculating the cost incurred by voltage sag effect in power networks. Thus, a new objective function is provided that comprehends technical standards as minimization of the cost incurred by voltage sag effect, active power losses and economic criterion as the installation and maintenance costs of DGs. Considering operational constraints of the system, the optimum allocation of DGs is a constrained optimization problem in which Lightning Attachment procedure optimization (LAPO) is used to resolve it and is the optimum number, size and location of DGs are determined in IEEE 33 bus test system and IEEE 34 bus test system. The results show that optimum allocation of DGs not only reduces the cost incurred by voltage sag effect, but also improves the other characteristics of the system.

Optimized PWM Switching Strategy for an Induction Motor Voltage Control

  • Lee, Hae-Hyung;Hwang, Seuk-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.527-533
    • /
    • 1998
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses, and has been therefor recognizedas the perfered PWM method, especially in the case of digital implementation. Three-phase invertor voltage control by space vector modulation consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The prefered switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by suing the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.

  • PDF

A Study on the Optimal Combination of Leaf and Air Spring for the Suspension (현가장치에서의 공기스프링과 겹판스프링의 최적 조합방법 연구)

  • Choi, Sun-Jun;Kwon, Hyuk-Hong;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.82-91
    • /
    • 1995
  • Many kind of springs are used in the suspension of automotive vehicles and among these the leaf spring and the air spring are included. These two springs have not been generally used together in one suspension, but recently the automotive models which use these two springs together increase. This reason is due to the merit of the combination of two type springs. The merits are two. One is the character of air spring, that is, the natural frequen- cy of system is constant in spite of variable weight. The other is the character of leaf spring, that is, the suspension mechanism is simple. The combination spring is used in medium size and special purpose bus. In this paper, we formulate the condition which the leaf spring must satisfy to be optimal design in the combination spring. And experiment is performed to prove the theory. The results are that the combination spring is better than leaf spring in the ride, and that the purposed theory is good for the combination spring design.

  • PDF