• Title/Summary/Keyword: Optimal Transducer

Search Result 116, Processing Time 0.028 seconds

Ultrasonic Simulation for Test Condition Estimate (탐상조건 예측을 위한 초음파 시뮬레이션)

  • Huh, Sun-Chul;Park, Young-Chul;Lee, Kwang-Young;Park, Won-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.37-44
    • /
    • 2001
  • Ultrasonic testing has a characteristics such as excellent permeability, high-sensitivity to find defect and an almost exact measurement for position. size and direction of inner defect, which differ from other non-destructive testing. In the study, we developed program into optimal testing condition, to distinguish obstacle echo and defect position. This program shows generation and processing of ultrasonic pulse. We compared simulation with ultrasonic test in 45$^\circ$, 60$^\circ$and 70$^\circ$transducer. Test results were in accordance with simulation within 0.1~7.2%.

  • PDF

A Study of Non-contacting Ultrasonic Technique for Evaluation of Fiber Reinforced Composite Materials (섬유강화 복합재료의 비접촉식 초음파 평가 기법 연구)

  • Choi Sang-Woo;Seo Kyeong-Cheol;Lee Joon-Hyun;Byun Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.268-271
    • /
    • 2004
  • Non-contact technique should be developed for receiving ultrasonic wave for on-line monitoring of processing defects of fiber reinforced composites, since couplant must be applied on composite materials when conventional ultrasonic testing technique was used. Restriction of conventional ultrasonic testing technique was proven by transmitting and receiving ultrasonic wave on CFRP in various direction of wave propagation with various incident angle of ultrasonic beam. Air-coupled transducer and laser interferometer were applied for non-contacting reception of ultrasonic wave in fiber reinforced composite materials. Air-coupled transducer has optimal sensitivity and frequency band of 300kHz has homogeneous characteristics on direction of wave propagation.

  • PDF

Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for the effective inspection of a ferromagnetic plate (효과적인 강자성체 평판구조물 검사를 위한 전 방향 전단파 자기변형 패치 트랜스듀서 개발)

  • Seung, Hong Min;Kim, Yoon Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.548-549
    • /
    • 2014
  • Omni-directional shear-horizontal magnetostrictive patch transducers have a disadvantage that magnetic flux leakage into the plate when it is installed on a ferromagnetic plate. The leakage produces poor transduction efficiency and unwanted wave mode excitation which should be avoided in guided wave inspections of large plate-like structures. In order to resolve these problems, we newly developed a method to reduce the leakage into the plate. In the method, the patch and the magnet are vertically lifted off and their optimal positions are determined by numerical simulations. Also, the verification of the developed method is successfully verified by experiments.

  • PDF

Design of a optimum structure for Ultrasonic Linear Motor using a travelling wave (진행파를 이용한 직선형 초음파 모터의 최적구조 설계)

  • 김연보;한우석;노용래
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2000
  • The conventional ultrasonic linear motors developed so far utilize a standing wave and are of a pi-type or a hybrid transducer type structure. Traveling wave type bi-direction linear motors have not been developed yet. This paper describes design of a new bi-directional ultrasonic linear motor working by means of a traveling wave. With the finite element method we design and verify validity of the new structure. And we determine its optimal structure size of design variables material and boundary conditions for proper generation of the traveling wave.

  • PDF

Design of a wideband cymbal transducer array (광대역 심벌 트랜스듀서 배열 설계)

  • Kim, Donghyun;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Cymbal transducers are often used as an array rather than single because they have a high quality factor and low energy conversion efficiency. When used as an array, there occurs a big change in the frequency characteristics of the array due to the interaction between constituent transducers. In this study, we designed the structure of a cymbal transducer array to have ultra-wideband characteristics using this property. First, cymbal transducers with specific center frequencies were designed. Then, a 2×2 planar array was constructed with the designed transducers, where the cymbal transducers were arranged to have same or opposite polarization directions. For this structure, we analyzed the effect of the difference in the center frequency of and the spacing between the constituent transducers on the acoustical characteristics of the array. Based on the analysis, we designed the structure of the cymbal transducer array to have the widest possible bandwidth.

Magnetostrictive Grating with an Optimal Yoke for Generating High-Output Frequency-Tuned SH Waves in a Plate (최적 요크를 갖는 자기변형 그레이팅을 이용한 고출력 주파수 튜닝 평판 SH 파 발생)

  • Kim, Woo-Chul;Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.71-74
    • /
    • 2007
  • The objective of this presentation is to introduce a recent development of a magnetostrictive grating technique using an optimal yoke to efficiently generate and measure SH (Shear-Horizontal) waves in a plate. Gratings are effective means to generate frequency-tuned waves, but the gap between magnetostrictive gratings inevitably obstructs magnetic flow. Because magnetic field is the main physical quantity to actuate and sense ultrasonic waves, the transducer performance is most significantly influenced by the magnetic field distribution in the strips. Thus, wave transduction efficiency can be substantially improved if better magnetic flow is formed in the strips. To improve the efficiency, the topology optimization method was used to determine an optimal yoke configuration. A series of experiments on an aluminum plate were conducted using a grating with and without the designed yoke; when the yoke was used, the signal outputs increased up to 60 %.

  • PDF

Optimal Beam Design of Underwater Acoustic Planar Array Transducer Considering Radiation Impedance (방사 임피던스를 고려한 평면 배열 수중 음향 트랜스듀서의 최적 빔 설계)

  • Joh, Chee-Young;Seo, Hee-Seon;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.40-45
    • /
    • 1996
  • In this paper, a nonlinear optimal design technique is presented to find an optimal beam pattern. With this technique, the beam width is minimized with respect to a given maximum allowable side-lobe level considering the self- and mutual radiation impedances of vibrators. The proposed method is applied to design a planar array consisting 37 vibrators which are symmetric in X, Y and $45^{circ}$ axes. The results show that significantly low side-lobe level maintaining a main beam width can be obtained using this method.

  • PDF

Optimal Placement of Measurement Using GAs in Harmonic State Estimation of Power System (전력시스템 고조파 상태 춘정에서 GA를 미용한 최적 측정위치 선정)

  • 정형환;왕용필;박희철;안병철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.8
    • /
    • pp.471-480
    • /
    • 2003
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. Among the reasons for its complexity are the system size, conflicting requirements of estimator accuracy, reliability in the presence of transducer noise and data communication failures, adaptability to change in the network topology and cost minimization. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Genetic Algorithms (GAs) which is widely used in areas such as: optimization of the objective function, learning of neural networks, tuning of fuzzy membership functions, machine learning, system identification and control. This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Genetic Algorithms (GAs) in the Harmonic State Estimation (HSE).

Optimal Sensor Allocation for Health Monitoring of Roller-Coaster Structure (롤러코스터의 모니터링을 위한 최적 센서 구성)

  • Heo, Gwang Hee;Jeon, Seung Gon;Park, In Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.165-174
    • /
    • 2011
  • This research aims at the optimal constitution of sensors required to identify the structural shortcoming of roller-coaster. In this research we analyzed the dynamic characteristics of roller-coaster by three dimensional FE modelling, decided on the appropriate location and number of sensors through optimal transducer theory, abstracted the mathematical value of modal features before and after damage on the basis of optimally placed and numbered sensors. and then presented it as a primary information about the basic structure which would be applied to damage estimation. As a target structure, the roller-coater at Seoul Children's Grand Park was chosen and built as a model reduced by one twentieth in size. In order to consider the Kinetics features particular to the roller-coaster structure, we made an exact three-dimensional FE modelling for the model structure by means of Spline function. As for the proper location and number of sensors, it was done by applying EIM and EOT. We also estimated the damage from the combination of strength, flexibility, and model corelation after abstracting the value of modal features. Finally the optimal transducer theory presented here in this research was proved to be valid, and the structural damage was well identified through changes in strength and flexibility. As a result, we were able to present the optimal constitution of sensors needed for the analysis of dynamic characteristics and the development of techniques in dynamic characteristics, which would ultimately contribute to the development of health monitoring for roller-coaster.

Ultrasonic Wave Effect on the Unit-process of Organic Synthesisi I. Oxydation of Aqueous Glucose Solution (초음파가 유기화합단위공정에 미치는 영향 (I) glucose 수용액의 산화에 관하여)

  • 국채호;조윤상
    • YAKHAK HOEJI
    • /
    • v.13 no.1
    • /
    • pp.16-21
    • /
    • 1969
  • When ultrasonic wave with barium titanate as an ultrasonic transducer (96.84kc, 1.4kv, 240mA) was applied to a dilute glucose solution, glucose was oxidized to glucuronic acid. It was found that the lower the glucose concentration, the higher the oxidation rate. The aeration and the presence of ferrous sulfate as a catalyst were found to increase the rate. The optimal duration for applying the wave to the solution was found to be six hours.

  • PDF