• Title/Summary/Keyword: Optimal Strength Ratio

Search Result 322, Processing Time 0.027 seconds

Evolutionary Shape Optimization of Flexbeam Sections of a Bearingless Helicopter Rotor

  • Dhadwal, Manoj Kumar;Jung, Sung Nam;Kim, Tae Joo
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.207-212
    • /
    • 2014
  • The shape optimization of composite flexbeam sections of a bearingless helicopter rotor is studied using a finite element (FE) sectional analysis integrated with an efficient evolutionary optimization algorithm called particle swarm assisted genetic algorithm (PSGA). The sectional optimization framework is developed by automating the processes for geometry and mesh generation, and the sectional analysis to compute the elastic and inertial properties. Several section shapes are explored, modeled using quadratic B-splines with control points as design variables, through a multiobjective design optimization aiming minimum torsional stiffness, lag bending stiffness, and sectional mass while maximizing the critical strength ratio. The constraints are imposed on the mass, stiffnesses, and critical strength ratio corresponding to multiple design load cases. The optimal results reveal a simpler and better feasible section with double-H shape compared to the triple-H shape of the baseline where reductions of 9.46%, 67.44% and 30% each are reported in torsional stiffness, lag bending stiffness, and sectional mass, respectively, with critical strength ratio greater than 1.5.

Evaluation of Stability of CLC through Strength and Reduction of Drying Shrinkage (강도 및 건조수축 저감을 통한 CLC의 안정성 평가)

  • Lee, Chang-Woo;Hwang, Woo-Jun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.205-206
    • /
    • 2022
  • This study intends to conduct tests on subsidence and drying shrinkage by mixing CaO-CSA expansion materials to ensure the stability of CLC, and to understand its properties. Based on CLC of 0.6, the replacement ratio of CaO-CSA expansion material was conducted at five levels compared to blast furnace slag, and the results are as follows. The replacement of CaO-CSA expansion material at an appropriate level produces ethringhite and potassium hydroxide, and it is believed that the internal voids of CLC and the Tobelmorite interlayer structure are charged to increase the structural stability, leading to an increase in compressive strength and a decrease in the drying shrinkage. However, it is judged that tissue relaxation due to excessive substances in the high replacement ratio affects the stability of CLC. In the future, we will conduct additional experiments on density, absorption rate, flow test, and settlement, and evaluate and analyze the stability of CLC by selecting the optimal replacement ratio of CaO-CSA expansion materials.

  • PDF

A Study on the Strength Properties of Concrete Containing Meta-Kaolin (메타카올린을 사용한 콘크리트의 강도특성에 관한 연구)

  • 김진만;이상수;김동석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.47-52
    • /
    • 2003
  • This study was performed to investigate the flow behavior of fresh concrete. strength properties, and durability properties on the chloride penetration resistance of hardened concrete containing Meta-Kaolin(MK) in the range from common strength to high strength to facilitate the use. The results are compared with properties of concrete containing Si1ca Fume(SF). As a result. superplasticizer required in MK concrete was decreased by 8-28% compared to SF concrete with the same slump, but MK concrete became more sticky than SF concrete. It was also found that considering the strength, the optimal cement replacement ratio of MK was 15%, and MK had concrete durable and dense by decreasing the average pore diameter of concrete.

  • PDF

Limitations on the Width-to-Thickness Ratio of Rectangular Concrete-Filled Tubular (CFT) Columns (콘크리트 충전 각형강관 기둥의 폭두께비 제한에 관한 연구)

  • Choi, Young-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.451-458
    • /
    • 2012
  • The concrete-filled steel tube (CFT) that has an excellent performance can be more economically used when the steel tube has a large width-to-thickness ratio. However, the international provisions such as American Institute of Steel Construction (AISC) limit the use of a slender plate in CFT members, resulting in a less optimal use of CFT. This study verifies the post buckling strength of CFT columns through the experimental program for Hollow Steel Sections (HSS) and CFTs with a with-to-thickness ratio ranged 60 to 100. The study also proposes a relaxed limitations of with-to-thickness ratio compared to the one specified in the current standards.

An Experimental Study on Quality Management of Strength in High Strength Mass Concrete Structure Using Thermal Insulation Material (보온재를 사용한 고강도 매스 콘크리트의 품질관리에 관한 연구)

  • Cho, Kyu-Hyun;Back, Min-Soo;Kim, Sung-Sik;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • This study is a basic experiment on quality management of the compression strength of high strength concrete, aiming. at quality management of high strength mass concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Different from ordinary concrete, high strength concrete generally shows the temperature high rising caused by hydration heat inside the concrete. It is known that, in mass concrete, thermal stress occurs due to the difference in temperature between the inside and the outside, which causes a significant difference in compression strength between structure beams and managerial test pieces. It is also reported that there is a large difference between the compression strength of cylindrical managerial test pieces of standard underwater curing and the strength of structure beam concrete. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created thermal insulation curing box and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

A Study of Field Mixing Ratio using Bio-grouting Injection Material (바이오그라우팅 주입재를 이용한 현장 배합비에 관한 연구)

  • Park, Ilehoon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.47-54
    • /
    • 2017
  • This study aims to develop a bio-grouting material in a powder form like cement. Sand gel samples were produced with the ratio of sodium silicate No.3 to water (50 : 50, 35 : 65, 20 : 80), and the ratio of cement to bio-grouting material (100 : 0, 90 : 10, 70 : 30) to select a mixing ratio of bio-grouting, respectively, and then analyzed the geltime over time. The uniaxial compressive strength was evaluated to select and suggest a mixing ratio optimized for construction conditions. The indoor test reveals that preferred geltime and uniaxial compressive strength is obtained in 35 : 65 with respect to the ratio of sodium silicate No.3 to water, and 90 : 10 with respect to the ratio of cement to bio-grouting material to demonstrate best optimal mixing ratios.

Effect of arbitrarily manipulated gap-graded granular particles on reinforcing foundation soil

  • Xin, Zhen H.;Moon, Jun H.;Kim, Li S.;Kim, Kab B.;Kim, Young U.
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.439-444
    • /
    • 2019
  • It is generally known that high strength soil is indicative of well-graded particle size distribution. However, there are some special cases of firm ground despite poor grade distribution, especially a specific gap-graded soil. Based on these discoveries, this study investigated the development of an additive of gap-graded soils designed to increase soil strength. This theoretical concept was used to calculate the mixed ratio required for optimal soil strength of the ground sample. The gap-graded aggregate was added according to Plato's polyhedral theory and subsequently calculated ratio and soil strength characteristics were then compared to characteristics of the original soil sample through various test results. In addition, the underground stress transfer rate was measured according to the test conditions. The test results showed that the ground settlement and stress limit thickness were reduced with the incorporation of gap-graded soil. Further field tests would confirm the reproducibility and reliability of the technology by using gap-graded soil to reinforce soft ground of a new construction site. Gap-graded soil has the potential to reduce the construction cost and time of construction compared to other reinforcing methods.

Effects of Physicochemical Parameters on Production of Cooked Rice Analogs by Calcium Alginate Gels (Calcium Alginate Gels을 이용한 Cooked Rice Analog의 제조에 대한 물리화학적 인자의 영향)

  • Roh, Hye-Jin;Jo, Eun-Hee;Kim, Hong-Deok;Kim, Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • This study elucidated the effects of physicochemical factors on the production of cooked rice analogs using calcium alginate gels. Cooked rice analogs were prepared using various sodium alginate concentrations, agitation speeds, dropping distances, coating times, curing times and heating times. The diameter ratio and rupture strength of authentic cooked rice were 0.38 and 268.4 kPa, respectively. The diameter ratio of the analogs prepared with 0.7% (w/v) sodium alginate was 0.39, which was the closest to that of authentic cooked rice. When sodium alginate solution (0.7%, w/v) was dropped into calcium chloride solution (2%, w/v) via a nozzle, the diameter ratio of the analogs at an agitation speed of 520 rpm was 0.39. The optimal dropping distance was 8 cm and the optimal coating and curing times were each 20 min. The analogs were coated with β-cyclodextrin to improve their physical properties. The diameter ratio of the coated analogs was little changed; however, the rupture strength decreased slightly after heating for 60 min at 95°C.

The Dynamic Properties of the Artificial Stone According to the Mixed Ratio Change of the Inorganic Composite and Waste Porcelain (폐자기와 3성분계 무기결합재의 혼합비율 변화에 따른 인조석재의 역학적 특성)

  • Yoo, Yong Jin;Bae, Sang Woo;Lee, Sang Soo;Song, Ha Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.95-96
    • /
    • 2012
  • This study makes with the environment-friendly artificial stone which doesn't use the cement and natural aggregate and increases the blast furnace slag that is the eco-friendly material that is the industrial byproduct, fly ash, and availability of the red mud and applies the coares aggregate substitute material as the cleistothecium. The experimental plan according to it indicated the compressive strength and flexural strength which is the most excellent in the mixied ratio 40% of the result degree of closeness magnetism of experimenting with the optimal mix obtained through the preceding stude.

  • PDF

Phaffia rhodozyma로부터 천연성 고기능 항산화제 Astaxanthin의 미셀형성을 통한 가용화 및 추출

  • Kim, Yeong-Beom;Lee, Eun-Gyu;Lee, Sang-Yun;Im, Gyo-Bin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.198-201
    • /
    • 2000
  • The capacity of micelle formation between astaxanthin and various surfactants was compared. Tween 20 was identified the most suitable surfactant in terms of astaxanthin extraction capacity. The ethylene oxide group of Tween 20 was identified as the most significant factor to increase the HLB value that determined the extraction capacity. The effect of micelle formation condition, such as molar ratio of astaxanthin and Tween 20, pH and ionic strength was also investigated. pH and ionic strength showed no significant effects. Antioxidant activity of astaxanthin was twice of ${\alpha}-tocopherol$ and 4 times of ${\beta} -carotene$. Crude astaxanthin extract from the yeast cell seemed to be less degraded than pure astaxanthin by air and light exposure, probably because of the presence of other carotenoids and lipids. Under the optimal conditions, the molar ratio of micelle formed was found to be 1 : 12 for astaxanthin : Tween 20.

  • PDF