• Title/Summary/Keyword: Optimal Speed

Search Result 2,455, Processing Time 0.026 seconds

SDRE Based Near Optimal Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 SDRE 기반 준최적 비선형 제어기 설계)

  • Park, Hyung-Moo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2015
  • In this paper, we propose a near optimal controller design method for permanent magnet synchronous generators (PMSGs) of MW-class direct-driven wind turbine systems based on SDRE (State Dependent Riccati Equation) approach. Using the solution matrix of an SDRE, we parameterize the optimal controller gain. We present a simple algorithm to compute the near optimal controller gain. The proposed optimal controller can enable PMSGs to precisely track the reference speed determined by the MPPT algorithm. Finally, numerical simulation results are given to verify the effectiveness of the proposed optimal controller.

Running Performance Analysis to Determine Optimal Test-bed Section for the Maximum Speed of 400km/h (400km/h 운행 최적 시범구간 선정을 위한 주행성능해석)

  • Chung, Heung-Chai;Eum, Ki-Young;Yun, Jang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2594-2599
    • /
    • 2011
  • In Korea, the HEMU-400X(High-speed Electric Multiple Unit-400km/h eXpress) has been developed since 2007 and will be operated over 400km/h in 2013. It is necessary to prepare test-bed section in Honam high-speed railroad to take the maxim running speed test for the HEMU-400X developed. In order to determine proper test-bed sections for the maximum speed of 400km/h, TPS(Train Performance Simulation) program with the data of train model, running resistance, traction power and braking capacity was used to analyze the train performances such as locations, speeds and power consumptions by times. In this study, the specifications of the HEMU-400X project and the route conditions of the Honam high-speed railroad under construction were utilized for the TPS program to determine the optimal test-bed sections for the maximum speed of 400km/h.

  • PDF

Optimal Design of a High Speed Carbon Composite Air Spindle (고속 공기 주축부를 위한 복합재료 주축의 최적 설계)

  • Bang, Gyeong-Geun;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1767-1776
    • /
    • 2001
  • For the stable operation of high speed air spindle, the low rotational inertia and high damping ratio of spindle shafts as well as high fundamental natural frequency are indispensable. Conventional steel spindles are net appropriate for very high speed operation because of their high rotational inertia and low damping ratio. In this study, a high speed spindle composed of carbon fiber epoxy composite shaft and steel flange was designed for maximum critical speed considering minimum static deflection and radial expansion due to bending load and centrifugal force during high speed relation. The stacking angle and the stacking thickness of the composite shaft and the adhesive bonding length of the 7teel flange were selected through vibrational analysis considering static and thermal loads due to temperature rise.

Optimization of high-speed machining process using constrained R-T characteristic curve (절삭률-공구수명 특성 곡선을 이용한 고속가공 공정의 최적화에 관한 연구)

  • 최용철;김동우;장윤상;조명우;허영무
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.100-105
    • /
    • 2003
  • With the recent development of machining technology, high speed machining process is widely used for-the mold and difficult-to -cut-materials machining since it allows achieving high productivity and surface quality. However, during the high speed machining process, high cutting speed and feed rate can cause abrupt tool life decrease due to rapid rising of the cutting tool temperature. Such situation may cause increase of machining cost. Thus, in this study, developed optimization algorithm is applied to determine optimal machining variables for multiple high speed machining. The R-T characteristic curve for machining economics problems with a linear-lorarithmic tool life model is determined by applying sensitivity analysis. finally, a series of high speed machining experiments are performed to determine the desired optimal machining variables, and the results are analyzed.

  • PDF

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

Effects of the Grinding Conditions on the Shape of Center Ground Parts

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.55-61
    • /
    • 2003
  • The form accuracy of parts has become an important parameter. Therefore, not only dimensional tolerance but also geometric tolerances are used in the design stage to satisfy the required quality and functions of parts. But the information on the machining conditions, which can satisfy the assigned geometric tolerance in do sign, is insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among them The results are as follows; The effects of work speed and depth of cut on the workpiece shape are negligible compared with the effect of traverse speed. These is an optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing as the traverse speed is increasing.

Efficiency Optimization Control of IPMSM Drive using multi HFC (다중 HFC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sun;Kang, Sung-Jun;Baek, Jeong-Woo;Jang, Mi-Geum;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.355-358
    • /
    • 2009
  • This paper proposes efficiency optimization control of IPMSM drive using multi hybrid fuzzy controller(HFC). The design of the speed controller based on fuzzy-neural network that is implemented using fuzzy control and neural network. The design of the current based on HFC using model reference and the estimation of the speed based on neural network using ANN controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi HFC. Also, this paper proposes speed control of IPMSM using HFC1, current control of HFC2-HFC3 and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled HFC, the operating characteristics controlled by efficiency optimization control are examined in detail.

  • PDF

A Study on the optimal Size and Speed of Common Bulk Carrier (일반살화물선의 경제성 평가에 관한 연구 (속력 및 적화톤수를 중심으로))

  • 양시권;손성빈
    • Journal of the Korean Institute of Navigation
    • /
    • v.6 no.1
    • /
    • pp.19-39
    • /
    • 1982
  • There may be a lor of studies on the economic design of ship for the most favorable combination of design basis on the owner's request. However, there are few on the economical ship's size and speed for the ship owner's stand point. This paper describes on the optimal ship's size and speed to the given marine commercial environments for the owner's requirement to the shipyard. As the result of the paper, the criterion curve of bulk carrier will also be used to assess existing ships for their profitability.

  • PDF

Order-picking Algorithm for Optimizing Operation Path of Orchard Speed Sprayer (과수원 스피드스프레이어의 작업 경로 최적화를 위한 오더 피킹 알고리즘)

  • Park, Tu-San;Hwang, Kyu-Young;Cho, Seong-In
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • The purpose of this study was to develop an optimal path planning program for autonomous speed sprayer in orchard. A digital map which contained coordinate information and entity information including height, width, radius of main stem, and disease of a trees was developed to build an optimal path. The digital map, dynamic programming and order-picking algorithm were used for planning an optimal path for autonomous speed sprayers. When this algorithm applied to rectangular-shaped orchards to travel whole trees, the developed program planned the same working path and same traveling distance as those of created by conventional method. But for irregular-shaped orchards, developed program planned differently and 5.06% shorter path than conventional method. When applied to create path for multi-selected trees, irregular-shaped orchards showed 13.9% shorter path and also rectangular-shaped orchards showed 9.1% shorter path. The developed program always planned shorter path than the path created by conventional method despite of variation of shape of orchards.

Efficiency Improvement of Inverter Fed Induction Machine System Using Neural Network (신경망을 이용한 유도전동기-인버터 시스템의 효율향상)

  • Ryu, Joon-Hyoung;Lee, Seung-Chul;Choy, Ick;Kim, K.B.;Lee, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1984-1986
    • /
    • 1998
  • This paper presents an optimal efficiency control for the inverter fed induction machine system using neural network. The motor speed and the load torque vary the efficiency characteristics of an induction motor. The optimal slip frequency has nonlinearity varied by the load torque as well as the motor speed. The induction motor is driven using the inverter system and the indirect vector control method which input is slip frequency. The neural network for estimating the optimal slip frequency has two input layer(the motor speed and the load torque) and one output layer(the optimal slip frequency that minimize the input power). Learning algorithm of the neural network is the back-propagation. Using the equivalent circuit including the nonlinearity of the induction motor, the loss reduction is analyzed quantitatively. Experimental results are shown noticeable power savings by proposed scheme in high speed and light load conditions.

  • PDF