• Title/Summary/Keyword: Optimal Price

Search Result 583, Processing Time 0.022 seconds

Effect of Concentration of NaOH and NaCl in Dipping Solution and Dipping Period of Egg in Completeness of Egg Pidan (침지액의 NaOH와 NaCl의 농도 및 계란 침지기간이 계란 피단의 완성도에 미치는 영향)

  • Shin, Teak-Soon;Cho, Seong-Keun;Lee, Hong-Gu;Cho, Byung-Wook;Kang, Han-Seok;Park, Hyean-Cheal;Bae, Seok-Hyeon;Kim, Yun-Seok;Kim, Byeong-Woo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.117-126
    • /
    • 2012
  • This study carried out on the manufacturing of pidan. The production of pidan can be one of solutions for over-produced eggs and stable egg price. For the alkali-pickling solution for manufacturing of Pidan, the tested concentration of NaOH and NaCl were respectively as 3, 5, 7% and 5, 10, 15, 20%, and examined every 2 days for 14days. According to the results, pH value of alkali-pickling solution was increased by the increment of NaOH concentration and the pickling period, and was decreased by the increment of NaCl concentration. The pH value of egg yolk was increased by the increment of NaOH concentration, but it was not significantly different by the NaCl concentration. By the increment of NaOH and NaCl concentrations, the alkali infiltration in egg yolk and egg white was accelerated. Furthermore, the weight change of the eggs in the alkali-solution has no effects on manufacturing of Pidan. Liquefied albumen showed significant differences by NaOH concentration rather than that of NaCl. There was no liquefied albumen for 14days at 3% of NaOH, but it was found between 11-12days at 5% and 8-10days at 7%, respectively. The pH values of egg white when it was liquefied albumen were between 11.8 and 12.0. Pidan was made by heat treatment after 6-7days dipped in the solution at the concentration of 7%, about 10days at 5%, and 12-14days at 3% of NaOH, respectively. Although, the period of manufacturing of Pidan was saved by the increment of NaOH concentration, liquefied albumen was accelerated and the food preference was decreased by ammonia odor. Therefore, the suitable concentration of NaOH is between 3 and 5%, and that of NaCl is between 5 and 10% due to the effect of salinity by the soaking period. Through this study, optimal pickling solution and dipping time for manufacturing of Pidan was figured out, and also find out that it can save a time about 15days for manufacturing of Pidan.

A Relative Study of 3D Digital Record Results on Buried Cultural Properties (매장문화재 자료에 대한 3D 디지털 기록 결과 비교연구)

  • KIM, Soohyun;LEE, Seungyeon;LEE, Jeongwon;AHN, Hyoungki
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.175-198
    • /
    • 2022
  • With the development of technology, the methods of digitally converting various forms of analog information have become common. As a result, the concept of recording, building, and reproducing data in a virtual space, such as digital heritage and digital reconstruction, has been actively used in the preservation and research of various cultural heritages. However, there are few existing research results that suggest optimal scanners for small and medium-sized relics. In addition, scanner prices are not cheap for researchers to use, so there are not many related studies. The 3D scanner specifications have a great influence on the quality of the 3D model. In particular, since the state of light reflected on the surface of the object varies depending on the type of light source used in the scanner, using a scanner suitable for the characteristics of the object is the way to increase the efficiency of the work. Therefore, this paper conducted a study on nine small and medium-sized buried cultural properties of various materials, including earthenware and porcelain, by period, to examine the differences in quality of the four types of 3D scanners. As a result of the study, optical scanners and small and medium-sized object scanners were the most suitable digital records of the small and medium-sized relics. Optical scanners are excellent in both mesh and texture but have the disadvantage of being very expensive and not portable. The handheld method had the advantage of excellent portability and speed. When considering the results compared to the price, the small and medium-sized object scanner was the best. It was the photo room measurement that was able to obtain the 3D model at the lowest cost. 3D scanning technology can be largely used to produce digital drawings of relics, restore and duplicate cultural properties, and build databases. This study is meaningful in that it contributed to the use of scanners most suitable for buried cultural properties by material and period for the active use of 3D scanning technology in cultural heritage.

Preparation of Pure CO2 Standard Gas from Calcium Carbonate for Stable Isotope Analysis (탄산칼슘을 이용한 이산화탄소 안정동위원소 표준시료 제작에 대한 연구)

  • Park, Mi-Kyung;Park, Sunyoung;Kang, Dong-Jin;Li, Shanlan;Kim, Jae-Yeon;Jo, Chun Ok;Kim, Jooil;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • The isotope ratios of $^{13}C/^{12}C$ and $^{18}O/^{16}O$ for a sample in a mass spectrometer are measured relative to those of a pure $CO_2$ reference gas (i.e., laboratory working standard). Thus, the calibration of a laboratory working standard gas to the international isotope scales (Pee Dee Belemnite (PDB) for ${\delta}^{13}C$ and Vienna Standard Mean Ocean Water (V-SMOW) for ${\delta}^{18}O$) is essential for comparisons between data sets obtained by other groups on other mass spectrometers. However, one often finds difficulties in getting well-calibrated standard gases, because of their production time and high price. Additional difficulty is that fractionation processes can occur inside the gas cylinder most likely due to pressure drop in long-term use. Therefore, studies on laboratory production of pure $CO_2$ isotope standard gas from stable solid calcium carbonate standard materials, have been performed. For this study, we propose a method to extract pure $CO_2$ gas without isotope fractionation from a solid calcium carbonate material. The method is similar to that suggested by Coplen et al., (1983), but is better optimized particularly to make a large amount of pure $CO_2$ gas from calcium carbonate material. The $CaCO_3$ releases $CO_2$ in reaction with 100% pure phosphoric acid at $25^{\circ}C$ in a custom designed, evacuated reaction vessel. Here we introduce optimal procedure, reaction conditions, and samples/reactants size for calcium carbonate-phosphoric acid reaction and also provide the details for extracting, purifying and collecting $CO_2$ gas out of the reaction vessel. The measurements for ${\delta}^{18}O$ and ${\delta}^{13}C$ of $CO_2$ were performed at Seoul National University using a stable isotope ratio mass spectrometer (VG Isotech, SIRA Series II) operated in dual-inlet mode. The entire analysis precisions for ${\delta}^{18}O$ and ${\delta}^{13}C$ were evaluated based on the standard deviations of multiple measurements on 15 separate samples of purified $CO_2$. The pure $CO_2$ samples were taken from 100-mg aliquots of a solid calcium carbonate (Solenhofen-ori $CaCO_3$) during 8-day experimental period. The multiple measurements yielded the $1{\sigma}$ precisions of ${\pm}0.01$‰ for ${\delta}^{13}C$ and ${\pm}0.05$‰ for ${\delta}^{18}O$, comparable to the internal instrumental precisions of SIRA. Therefore, we conclude the method proposed in this study can serve as a way to produce an accurate secondary and/or laboratory $CO_2$ standard gas. We hope this study helps resolve difficulties in placing a laboratory working standard onto the international isotope scales and does make accurate comparisons with other data sets from other groups.