• Title/Summary/Keyword: Optimal Placement

Search Result 363, Processing Time 0.038 seconds

Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm

  • Li, Shunlong;Dong, Jialin;Lu, Wei;Li, Hui;Xu, Wencheng;Jin, Yao
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.769-780
    • /
    • 2017
  • Cable force monitoring is an essential and critical part of the safety evaluation of cable-supported bridges. A reasonable cable force monitoring scheme, particularly, sensor placement related to accurate safety assessment and budget cost-saving becomes a major concern of bridge administrative authorities. This paper presents optimal sensor placement for cable force monitoring by selecting representative sensor positions, which consider the spatial correlativeness existing in the cable group. The limited sensors would be utilized for maximizing useful information from the monitored bridges. The maximum information coefficient (MIC), mutual information (MI) based kernel density estimation, as well as Pearson coefficients, were all employed to detect potential spatial correlation in the cable group. Compared with the Pearson coefficient and MIC, the mutual information is more suitable for identifying the association existing in cable group and thus, is selected to describe the spatial relevance in this study. Then, the bond energy algorithm, which collects clusters based on the relationship of surrounding elements, is used for the optimal placement of cable sensors. Several optimal placement strategies are discussed with different correlation thresholds for the cable group of Nanjing No.3 Yangtze River Bridge, verifying the effectiveness of the proposed method.

Optimal Sensor Placement for Structural Parameter Estimation Using Genetic Algorithm (유전자 알고리즘을 이용한 구조계수추정 목적의 최적 계측점 선정)

  • Bahng, Eun-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.9-16
    • /
    • 2010
  • In the health monitoring of civil engineering structures, the optimal sensor placement has a major influence on the quality of the results. This paper considers the problem of locating sensors with the aim of maximizing the data information so that structural parameters or damage of structures can be assessed. An proposed technique using a genetic algorithm is introduced to find the optimal placement of sensors. The sensitivity on modal vectors by structural parameters and the orthogonality of modal vectors have been taken as the fitness function of the genetic algorithm. A simple tower structure is used for example analyses to investigate the feasibility and applicability of the proposed approach. The example analyses show the way how the modal sensitivity and the modal orthogonality in the fitness function have influence on the optimal sensor placement. It is shown that the present method using the proposed fitness function can provide the reliable results.

Optimal Placement of Sensors and Actuators Using Measures of Modal Controllability and Observability in a Balanced Coordinate

  • Park, Un-Sik;Choi, Jae-Weon;Yoo, Wan-Suk;Lee, Man-Hyung;Son, Kwon;Lee, Jang-Myung;Lee, Min-Cheol;Han, Sung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 2003
  • In this paper, a method for optimal placement of sensors and actuators is presented by using new measures of modal controllability and observability defined in a balanced coordinate system. The proposed new measures are shown to have a great advantage in practical use when they are used as criteria for selecting the locations of sensors and actuators, since the most controllable and observable locations can be obtained to be identical. In addition, they are more accurate than the measures of Hamdan and Nayfeh in that the effects of the eigenvector norm are considered into the magnitude of measures. In simulations, to verify the effectiveness of the proposed measures and optimal placement method, the closed-loop response of a simply supported flexible beam, in which the number and locations of actuators are determined by using the proposed measures and optimal placement method, has been examined and compared with the case of Hamdan and Nayfeh’s measures.

The Access Point Placement Optimization of Wireless LAN in Indoor Environment (실내 환경에서 무선 LAN Access Point의 위치 설정 최적화)

  • Lim, Guk-Chan;Kang, Hun;Choi, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.9
    • /
    • pp.1-11
    • /
    • 2002
  • The optimal AP placement for wireless LAN is important factor for improving service quality and reducing cost. Decision of AP placement is depend on radio signal strength, environment factor and logical area property, which is user's frequently posed place. This paper proposes optimal multiple AP placement method based on radio prediction tool. The proposed method can get flexibility in multiple AP placement using user defined parameter and the optimization design uses Hopfield network algorithm. And path-loss model is used for one of radion prediction model. The result of simulation shows that it is efficiently reduces the process to find optimal AP placement. And the proposed optimization design of multiple AP placement can improve service quality for wireless LAN.

Analytical and sensitivity approaches for the sizing and placement of single DG in radial system

  • Bindumol, E.K.;Babu, C.A.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 2016
  • Rapid depletion of fossil based oil, coal and gas reserves and its greater demand day by day necessitates the search for other alternatives. Severe environmental impacts caused by the fossil fire based power plants and the escalating fuel costs are the major challenges faced by the electricity supply industry. Integration of Distributed Generators (DG) especially, wind and solar systems to the grid has been steadily increasing due to the concern of clean environment. This paper focuses on a new simple and fast load flow algorithm named Backward Forward Sweep Algorithm (BFSA) for finding the voltage profile and power losses with the integration of various sizes of DG at different locations. Genetic Algorithm (GA) based BFSA is adopted in finding the optimal location and sizing of DG to attain an improved voltage profile and considerable reduced power loss. Simulation results show that the proposed algorithm is more efficient in finding the optimal location and sizing of DG in 15-bus radial distribution system (RDS).The authenticity of the placement of optimized DG is assured with other DG placement techniques.

A Study on the SVR Optimal Placement in Distribution System with Distributed Generators (분산전원이 연계된 배전 계통의 SVR 최적 설치위치 선정)

  • Lee, Hyun-Ok;Huh, Jae-Sun;Kim, Chan-Hyeok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.69-75
    • /
    • 2013
  • This paper proposes a new algorithm for the optimal placement of a step voltage regulator(SVR) in distribution system with Distributed Generators(DG) using a Particle Swarm Optimization(PSO). The objective function of this algorithm is to find optimal placement for minimum loss while maintaining each node voltage fluctuations within upper and lower limits. In the objective function of proposed algorithm, the deviations to reference voltage and the distribution loss are considered. To verify effectiveness of the proposed method, simulation is implemented using MATLAB.

Optimal Placement of Synchronized Phasor Measurement Units for the Robust Calculation of Power System State Vectors (견실한 전력계통 상태벡터 계산을 위한 동기 페이저 측정기 최적배치)

  • Cho, Ki-Seon;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.75-79
    • /
    • 2000
  • This paper proposes the optimal placement with minimum set of Phasor Measurement Units (PMU's) using tabu search and makes an alternative plan to secure the robustness of the network with PMU's. The optimal PMU Placement (OPP) problem is generally expressed as a combinatorial optimization problem subjected to the observability constraints. Thus, it is necessary to make a use of an efficient method in solving the OPP problem. In this paper, a tabu search based approach to solve efficiently this OPP problem proposed. The observability of the network with PMU's is fragile at any single PMU contingency. To overcome the fragility, an alternative scheme that makes efficient use of the existing measurement system in power system state estimation proposed. The performance of the proposed approach and the alternative scheme is evaluated with IEEE sample systems.

  • PDF

Algorithm of Harmonic State Estimation for Power Systems (전력시스템 고조파 상태추정알고리즘 개발)

  • Wang, Y.P.;Chong, H.H.;Chong, J.W.;Han, H.H.;Kwak, N.H.;Jeon, Y.S.;Park, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.149-150
    • /
    • 2006
  • The design of a measurement system to perform Harmonic State Estimation (HSE) is a very complex problem. In particular, the number of harmonic instruments available is always limited. Therefore, a systematic procedure is needed to design the optimal placement of measurement points. This paper presents a new HSE algorithm which is based on an optimal placement of measurement points using Intelligent Algorithms (IAs). This HSE has been applied to the Simulation Test Power System for the validation of the new HSE algorithm. The study results have indicated an economical and effective method for optimal placement of measurement points using Intelligent Algorithms (IAs) in the Harmonic State Estimation(HSE).

  • PDF

Capacitor Placement in Radial Distribution Systems Using Chaotic Search Algorithm (방사상 배전계통의 커패시터 설치를 위한 카오스 탐색알고리즘)

  • Rhee, Sang-Bong;Kim, Kyu-Ho;You, Seok-Ku
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.124-126
    • /
    • 2002
  • The general capacitor placement problem is a combinatorial optimization problem having an objective function composed of power losses and capacitor installation costs subject to bus voltage constraints. In this paper, the method employing the chaos search algorithm is proposed to solve optimal capacitor placement problem with reducing computational effort and enhancing optimality of the solution. Chaos method in optimization problem searches the global optimal solution on the regularity of chaotic motions and easily escapes from local or near optimal solution than stochastic optimization algorithms. The chaos optimization method is tested on 9 buses and 69 buses system to illustrate the effectiveness of the proposed method.

  • PDF

Harmony Search Algorithm for Optimal Placement Problem of Distributed Generations (분산전원 최적설치를 위한 Harmony Search 알고리즘 응용)

  • Rhee, Sang-Bong;Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.866-870
    • /
    • 2010
  • This paper presents a application of Harmony Search (HS) algorithm for optimal placement of distributed generations(DGs) in distribution systems. In optimization procedure, the HS algorithm denotes the searching ability for the global optimal solution with simple coding of the iteration procedure, and shows the fast convergence characteristics for getting solutions. The HS algorithm is tested on 9 buses and 69 buses distribution systems, and the results prove its effectiveness to determine appropriate placement points of DGs and reducing amount of active power without the occurrence of any mis-determination in selection of its capacity.