• 제목/요약/키워드: Optimal Operation Strategy

검색결과 187건 처리시간 0.02초

운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가 (An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation)

  • 이경호;최병윤;이상렬
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

시뮬레이션 모델기반 냉난방 설비 일별 최적 기동/정지 제어기법 개발 (Development of Simulation Model Based Optimal Start and Stop Control Daily Strategy)

  • 이찬우;구준모
    • 한국지열·수열에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.16-21
    • /
    • 2018
  • This work aims to develop a platform to investigate the effect of operation schedules on the building energy consumption and to derive a simulation model based optimal start and stop daily strategy. An open-source building energy simulation tool DOE2 is used for the engine, and the developed simulation model is validated using ASHRAE guideline 14. The effect of late-start/early-stop operation of HVAC system on the daily building energy consumption was analyzed using the developed simulation model. It was found that about 10% of energy consumption cut was possible using the control strategy for an hour of advance of the stop operation, and about 3% per an hour of delay of the start operation.

배전계통에 있어서 열병합 분산형전원의 최적 도입계획에 관한 기초적 연구 (Optimal Planning for Dispersed Generating Sources in Distribution Systems)

  • 심헌;노대석;최재석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.513-515
    • /
    • 2000
  • This paper deals with a method for determining an optimal operation strategy of dispersed generating sources considering thermal merits. The optimal operation of these sources can be determined by the principle of equal incremental fuel cost. This paper presents an optimal operation strategy using the Kuhn-Tucker's optimal conditions and also an priority method to decide the optimal location of those sources in power systems. The validity of the proposed algorithms are demonstrated using a model system.

  • PDF

Operation Planning of Reserve in Microgrid Considering Market Participation and Energy Storage System

  • Lee, Si Young;Jin, Young Gyu;Kim, Sun Kyo;Yoon, Yong Tae
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.1089-1095
    • /
    • 2014
  • Innumerable microgrids would be operated independently by individual operators in a future smart grid. This kind of decentralized power system requires entirely different operation scheme in the actual power system and electricity market operation. Especially, frequency regulation is very important for successive energy trade in this multi-microgrid circumstance. This paper presents an optimal energy and reserve market participation strategy and operation strategy of energy storage system (ESS) by a microgrid operator (MGO). For definite evaluation of the proposed strategy, we postulate that the MGO should participate in the Power Exchange for Frequency Control (PXFC) market, which was devised by Maria Ilic and her coworkers and is suitable to the decentralized operation circumstances. In particular, optimal reserve capacity of the frequency control market and optimal market participation ratio of ESS between frequency control market and energy market are derived theoretically and evaluated by simulations utilizing Nordic Pool Elspot price data.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

회분식 공정과 회분식 증류공정을 복합한 순차적 다목적 공정의 최적 운용전략 및 생산일정계획 (Optimal Operation Strategy and Production Planning of Sequential Multi-purpose Batch Plants with Batch Distillation Process)

  • 하진국;이의수
    • 제어로봇시스템학회논문지
    • /
    • 제12권12호
    • /
    • pp.1163-1168
    • /
    • 2006
  • Manufacturing technology for the production of high value-added fine chemical products is emphasized and getting more attention as the diversified interests of customers and the demand of high quality products are getting bigger and bigger everyday. Thus, the development of advanced batch processes, which is the preferred and most appropriate way of producing these types of products, and the related technologies are becoming more important. Therefore, high-precision batch distillation is one of the important elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. Accordingly, proposing a process structure explanation and operation strategy of such processes including batch processes and batch distillation would be of great value. We investigate optimal operation strategy and production planning of multi-purpose plants consisting of batch processes and batch distillation for the manufacturing of fine chemical products. For the short-term scheduling of a sequential multi-purpose batch plant consisting of batch distillation under MPC and UIS policy, we proposed a MILP model based on a priori time slot allocation. Also, we consider that the waste product of being produced on batch distillation is recycled to the batch distillation unit for the saving of raw materials. The developed methodology will be especially useful for the design and optimal operations of multi-purpose and multiproduct plants that is suitable for fine chemical production.

전력계통에 있어서 분산형 연료전지 발전시스템의 최적 도입계획에 관한 연구 (A Study on the Optimal Planning for Dispersed Fuel Cell Generation Systems in Power Systems)

  • 노대석;심헌;오용택;최재석;차준민
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권6호
    • /
    • pp.265-274
    • /
    • 2001
  • Recently, the operation of power systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome those problems, a study on the planning and operation in power systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems, has been performed energetically. This paper presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell generation systems, considering thermal supply as well as electric power supply. In other words, the optimal operation of those sources can be determined easily by the principle of equal incremental fuel cost and the thermal merit of those sources can be also evaluated quantitatively through Kuhn-Tucker's optimal conditions. In additions, an priority method using the comparison of total cost at the peak load time interval is presented in order ot select the optimal locations of those sources. The validity of the proposed algorithms is demonstrated using a model system.

  • PDF

고정자 자속의 해석을 통한 직접 토크 제어 SPMSM의 최대 토크 운전 (Maximum Torque Operating Strategy based on Stator Flux Analysis for Direct Torque and Flux Control of a SPMSM)

  • 김상훈
    • 전력전자학회논문지
    • /
    • 제19권5호
    • /
    • pp.463-469
    • /
    • 2014
  • This paper proposes a maximum torque operation strategy for the direct torque control of a surface-mounted permanent-magnet synchronous motor (SPMSM). The proposed method analyzes the available operation region of the stator flux of the SPMSM under voltage and current constraints. Based on this analysis, the optimal stator flux trajectory that yields the maximum torque is obtained across the entire operation region, including constant torque and constant power regions. The proposed strategy is also applicable in the flux-weakening region II operation of the SPMSM, which has no speed limit. The validity of the proposed method is verified through experiments conducted on an 800 W SPMSM drive system.

관외 빙착형 빙축열시스템의 운전방식에 따른 최소용량 비교 (Comparative analysis of the minimum capacity of an ice-on-coil thermal storage system for various operation strategies)

  • 이대영;정성훈;강병하
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.401-413
    • /
    • 1999
  • An ice storage cooling facility with cooling capacity of 150㎾ has been constructed for the purpose of developing optimal design and control strategy for an ice storage system. As the first step to this purpose, a computer program has been developed to simulate the operation of the ice storage system and examined precisely by comparing the results with those measured from the test facility. With the simulation program verified from the comparison, a design procedure has been developed to determine the minimum capacity required for each operation strategy available commercially. It is shown that the minimum sizes of the chiller and the storage tank are strongly dependent on the control strategy, i.e., chiller priority or storage priority, but less affected by the arrangement method, i.e., chiller upstream or chiller downstream.

  • PDF

Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant

  • Jae Min Kim;Junyong Bae;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.839-849
    • /
    • 2023
  • The development of automation technology to reduce human error by minimizing human intervention is accelerating with artificial intelligence and big data processing technology, even in the nuclear field. Among nuclear power plant operation modes, the startup and shutdown operations are still performed manually and thus have the potential for human error. As part of the development of an autonomous operation system for startup operation, this paper proposes an action coordinating strategy to obtain the optimal actions. The lower level of the system consists of operating blocks that are created by analyzing the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action coordination strategy was developed in this work as the upper level of the system. Three quantification methods were compared and evaluated based on the future plant state predicted by plant parameter prediction models using long short-term memory networks. Results confirmed that the optimal action to satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected that this methodology can be generalized through future research.