• Title/Summary/Keyword: Optimal Operation Environment

Search Result 312, Processing Time 0.028 seconds

A Study on the Optimal Control Algorithms for the Advanced Wastewater Treatment Process with Variable Hydrodynamic Flow Patterns (유로 변경식 고도하수처리 공정의 최적 제어 알고리즘에 관한 연구)

  • Kang, Seong-Wook;Cho, Wook-Sang;Huh, Hyung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.217-225
    • /
    • 2005
  • Because of the limitation of controllable operation variables for the wastewater treatment process with variable hydrodynamic flow patterns, it may preclude the use of this type of nutrient removal activated sludge process. As the operation variables, only temperature and dissolved oxygen (DO) have been used to operate the process. This study made an effort to improve treatment efficiency and operability of the process by the following methodologies: 1) process and operation data analysis using process simulation, 2) determination of optimal control logic or algorithm using a pilot-scaled experimental apparatus and its operations, and 3) application of experimental and simulation results to find the optimal process operation modes. In this study, it was found that the optimal operation mode named 'save mode' in the basis of process variables, such as the ammonia-nitrogen concentration of inlet flow, temperature and flow rate, can reduce the operation cost comparing with the present normal operation mode. And the stable conditions in nitrification were also shown by the proportional control of DO with the inlet air flow rate of blower and the mixing rate of mechanical aeration.

The Study on the Optimal Operation Strategies for Central Cooling System Considering Energy Cost (Focus on a medical facility) (에너지 비용을 고려한 중앙냉방시스템 최적운영 방안에 관한 연구(의료시설을 중심으로))

  • Lee, Ga-Ram;Song, Jae-Yeob
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • For a central cooling system of a medical facility composed of absorption chiller and screw chiller, the study was conducted on how to minimize the energy cost. In consideration of the energy cost, the optimal operation method in which the operation method of the heat source is changed according to the size of the cooling load was derived through simulation analysis. When applying the optimal operation method, the indoor environment, energy consumption, and energy cost were analyzed and compared with the reference operation method.

A Study on the Optimal Planning for Dispersed Fuel Cell Generation Systems in Power Systems (전력계통에 있어서 분산형 연료전지 발전시스템의 최적 도입계획에 관한 연구)

  • Rho, Dae-Seok;Shim, Hun;Oh, Yong-Taek;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.265-274
    • /
    • 2001
  • Recently, the operation of power systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome those problems, a study on the planning and operation in power systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems, has been performed energetically. This paper presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell generation systems, considering thermal supply as well as electric power supply. In other words, the optimal operation of those sources can be determined easily by the principle of equal incremental fuel cost and the thermal merit of those sources can be also evaluated quantitatively through Kuhn-Tucker's optimal conditions. In additions, an priority method using the comparison of total cost at the peak load time interval is presented in order ot select the optimal locations of those sources. The validity of the proposed algorithms is demonstrated using a model system.

  • PDF

Combat Effectiveness Based Analysis Methodology for Optimal Requirement of Attack Helicopter Using Simulation (시뮬레이션을 이용한 전투효과기반 공격헬기 소요 분석방안)

  • Jung, Chi-Young;Lee, Jae-Yeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1099-1105
    • /
    • 2010
  • The purpose of this paper is to propose a methodology that can estimate optimal requirement of attack helicopter Korea army will be operating in future. For estimating optimal requirement, attack helicopter's operation concept, performance, battlefield environment and enemy threat are considered. We use a wargame model, AAsim(Army Aviation simulation), as a analytic simulation model which is used to analyze DOTMLPF and operation in army aviation field. In this paper, we conduct battle experiment for anti armored corps operation which reflects attack helicopter's combat effectiveness very well. As a result of simulation, the destructive rate for enemy armored corps per each attack helicopter can be calculated. In this paper, we propose optimal requirement of attack helicopter using that destructive rate for enemy armored corps.

A Study on the Optimal Operation of Fuel Cell in Power Systems (전력계통에 있어서 신에너지전원(연료전지)의 최적 운용방안에 관한 연구)

  • 노대석;홍승만;이은미
    • Proceedings of the KAIS Fall Conference
    • /
    • 2002.11a
    • /
    • pp.141-144
    • /
    • 2002
  • Recently, the operation of power distribution systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome these problems, a study on the planning and operation in distribution systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems has been performed energetically. This study presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell systems, in the case of both only electric power supply and thermal supply as well as electric power supply. In other words, the optimal operation of these sources can be determined easily by the principle of equal incremental fuel cost and the thermal merits is evaluated quantitatively through Kuhn-Tucker's optimal conditions. In order to select the optimal locations of those sources, an priority method using the comparison of total cost at the peak load time interval is also presented. The validity of the proposed algorithms is demonstrated using a model system.

Optimal Traffic Control Method by the Cost-analytic Operations Model in Heterogeneous Network Environment (다중 네트워크 환경하에서의 한계 비용 함수에 의한 최적 트래픽 제어 기법)

  • Kim, Jae-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.941-949
    • /
    • 2007
  • By the newly emerging Network access technology, we face the new heterogeneous network environment. The required level of service quality and diversity are now multiplied by the increment of wireless service subscribers. Focusing on the co-existence of multiple access network technology and the complex service needs of users, the wireless service operators should present the stable service quality for every user. The service operators should build the new operation framework which combines the pre-established networks and newly adopted ones. Our problem is finding the optimal heterogeneous network operation framework. We suggest a market-based marginal cost function for evaluating the relative value of resource of each network and develop the whole new heterogeneous network operation framework.

Optimal Release Time for Software Considering Distribution of Periodic Service Packs and Uncertain Patches during Operational Phase (사용단계에서 주기적 서비스 팩 배포와 불확실한 패치 배포를 고려한 소프트웨어의 최적 출시시기)

  • Park, Il Gwang;Kong, Myung Bock
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.487-493
    • /
    • 2007
  • In this paper, we deal with an optimal software-release problem of determining the time to stop testing and release the software system to the user. The optimal release time problem is considered from maintenance like the periodic distribution of service packs and the unpredictable distribution of patches after the release. Moreover, the environment of software error-detection during operation differs from the environment during testing. This paper proposes the software reliability growth model which incorporates periodic service packs, unpredictable patches and operational environment. Based on the proposed model, we derive optimal release time to minimize total cost composed of fixing an error, testing and maintenance. Using numerical examples, optimal release time is determined and illustrated.

The Optimal Operation for Community Energy System Using a Low-Carbon Paradigm with Phase-Type Particle Swarm Optimization

  • Kim, Sung-Yul;Bae, In-Su;Kim, Jin-O
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.530-537
    • /
    • 2010
  • By development of renewable energy and more efficient facilities in an increasingly deregulated electricity market, the operation cost of distributed generation (DG) is becoming more competitive. International environmental regulations of the leaking carbon become effective to reinforce global efforts for a low-carbon paradigm. Through increased DG, operators of DG are able to supply electric power to customers who are connected directly to DG as well as loads that are connected to entire network. In this situation, a community energy system (CES) with DGs is a new participant in the energy market. DG's purchase price from the market is different from the DG's sales price to the market due to transmission service charges and other costs. Therefore, CES who owns DGs has to control the produced electric power per hourly period in order to maximize profit. Considering the international environment regulations, CE will be an important element to decide the marginal cost of generators as well as the classified fuel unit cost and unit's efficiency. This paper introduces the optimal operation of CES's DG connected to the distribution network considering CE. The purpose of optimization is to maximize the profit of CES. A Particle Swarm Optimization (PSO) will be used to solve this complicated problem. The optimal operation of DG represented in this paper would guide CES and system operators in determining the decision making criteria.

An Analysis of the Energy Saving Effect Through the Retrofit and the Optimal Operation for HVAC Systems (공조설비 운전방법 및 시설개선을 통한 에너지절약 효과분석)

  • Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.343-350
    • /
    • 2012
  • The major goal of building energy management is to minimize the energy consumption while maintaining the comfortable environment condition. Nowadays building energy management to save HVAC energy and so on is the most critical issue for existing building service branch with high efficiency equipments and their optimal operation. The effects on the building energy savings of the building equipment retrofit and the improvement of its operation method, especially in the field of HVAC system, were analyzed in this study for domestic small and/or medium sized buildings. Over 8.8% of energy saving was achieved compared withe total energy consumption in commercial building. These results could be used for reasonable maintenance and efficient management of the various building service equipments and related systems.

A Decomposition Algorithm for Convex Structuring Elements in Morphological Operation (모폴로지 연산에 사용되는 볼록 구조요소의 분해를 위한 알고리듬)

  • 온승엽
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.1
    • /
    • pp.11-23
    • /
    • 2004
  • The decomposition of a structuring element for a morphological operation reduces the amount of the computation required for executing the operation. In this paper, we present a new technique for the decomposition of convex structuring elements for morphological operations. We formulated the linear constraints for the decomposition of a convex polygon in discrete space, then the constraints are applied to the decomposition of a convex structuring element. Also, a cost function is introduced to represent the optimal criteria for decomposition. We use linear integer programming technique to find the combination of basis structuring elements which minimizes the amount of the computation required for executing the morphological operation. Formulating different cost functions for different implementation methods and computer architectures, we can determine the optimal decompositions which guarantee the minimal amounts of computation on different computing environment.

  • PDF