• Title/Summary/Keyword: Optimal Layout

Search Result 307, Processing Time 0.022 seconds

Design of Transmission Gear Machining Line for Developing Countries Based on Thinking Process and Simulation Method (사고 프로세스와 시뮬레이션 기법 기반의 저임금국가에 적합한 변속기 기어가공라인의 설계)

  • Park, Hong-Seok;Park, Jin-Woo;Choi, Hung-Won
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.260-267
    • /
    • 2011
  • Nowadays, automobile manufacturers are faced with increasing global competition which is required low cost as well as high quality. To reduce shipping and handling cost and delivery time, lots of automobile manufactures tried to build their new factory in the neighborhood of market. Simultaneously, many factories are under construction in developing countries to make efficient use of low-wage workers. However, because systems are installed in developing countries as the same type of domestic facilities, systems have lots of problems such as high installation cost and inefficient use of manpower. To find core problems and generate optimal solution of these problems, thinking process of TOC(Theory Of Constrains) is used. In case of transmission gear machining system, semi-auto system is proposed as the best solution to increase manpower efficiency and system utilization. Semi-auto system consists of automatic machining process and manual transporting process. The system layout is generated based on semi-auto process concept. And, 3D simulation method using QUEST is used to verify production volume of generated system.

Thermal Performance Analysis for Cu Block and Dense Via-cluster Design of Organic Substrate in Package-On-Package

  • Lim, HoJeong;Jung, GyuIk;Kim, JiHyun;Fuentes, Ruben
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.91-95
    • /
    • 2017
  • Package-On-Package (PoP) technology is developing toward smaller form factors with high-speed data transfer capabilities to cope with high DDR4x memory capacity. The common application processor (AP) used for PoP devices in smartphones has the bottom package as logic and the top package as memory, which requires both thermally and electrically enhanced functions. Therefore, it is imperative that PoP designs consider both thermal and power distribution network (PDN) issues. Stacked packages have poorer thermal dissipation than single packages. Since the bottom package usually has higher power consumption than the top package, the bottom package impacts the thermal budget of the top package (memory). This paper investigates the thermal and electrical characteristics of PoP designs, particularly the bottom package. Findings include that via and dense via-cluster volume have an important role to lower thermal resistance to the motherboard, which can be an effective way to manage chip hot spots and reduce the thermal impact on the memory package. A Cu block and dense via-cluster layout with an optimal location are proposed to drain the heat from the chip hot spots to motherboard which will enhance thermal and electrical performance at the design stage. The analytical thermal results can be used for design guidelines in 3D packaging.

Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters

  • Li, Bin;Pang, Yong-jie;Cheng, Yan-xue;Zhu, Xiao-meng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.373-381
    • /
    • 2017
  • A Collaborative Optimization (CO) methodology for ring-stiffened composite material pressure hull of underwater vehicle is proposed. Structural stability and material strength are both examined. Lamination parameters of laminated plates are introduced to improve the optimization efficiency. Approximation models are established based on the Ellipsoidal Basis Function (EBF) neural network to replace the finite element analysis in layout optimizers. On the basis of a two-level optimization, the simultaneous structure material collaborative optimization for the pressure vessel is implemented. The optimal configuration of metal liner and frames and composite material is obtained with the comprehensive consideration of structure and material performances. The weight of the composite pressure hull decreases by 30.3% after optimization and the validation is carried out. Collaborative optimization based on the lamination parameters can optimize the composite pressure hull effectively, as well as provide a solution for low efficiency and non-convergence of direct optimization with design variables.

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor Backcover의 사이클 타임 단축에 관한 연구)

  • Yoon K. H.;Kim J. K.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.368-374
    • /
    • 2005
  • In the present study we used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design and molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors. The contributing factors for the final cycle time could be enumerated as follows; the thickness of hot spot, main nominal part thickness, coolant inlet temperature, melt temperature and cooling line layout, etc.. As a first step, all the critical factors of design process applied to the current monitor housing were investigated through 6 sigma process. Thereafter, the optimal and better critical factors found in the first step were applied to new product design to prove that our process was correct. The Moldflow was used for injection molding simulation, and Minitab software for the statistical analysis, respectively. Finally, the productivity of new design was increased about 33 percents for our specific case.

Determining Appropriate Production Conditions in Cellular Manufacturing Systems (셀생산(生産)의 효율적(效率的)인 운용(運用)을 위한 시뮤레이션 연구(硏究))

  • Song, Sang-Jae;Choi, Jung-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.23-34
    • /
    • 1993
  • Although there are numerous studies that address the problem of optimal machine grouping and part family classification for cellular manufacturing, little research has been reported that studies the conditions where cellular manufacturing is appropriate. This paper, in order to evaluate and compare the job shop with the GT cellular shop, the performance of those shops were simulated by using SIMAN. We tested the effect of independent variables including changes of product demands, intercell flow level, group setup time, processing time variability, variety of material handling systems, and job properties (ratio of processing time and material handling time). And also performance measures (dependent variables), such as machine utilization, mean flow time, average waiting time, and throughput rate, are discussed. Job shop model and GT cellular shop written in SIMAN simulation language were used in this study. These systems have sixteen machines which are aggregated as five machine stations using the macro feature of SIMAN. The results of this research help to better understand the effect of production factors on the performance of cellular manufacturing systems and to identify some of the necessary conditions required to make these systems perform better than traditional job shops. Therefore, this research represents one more step towards the characterization of shops which may benefit from cellular manufacturing.

  • PDF

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

The influence of convoy loading on the optimized topology of railway bridges

  • Jansseune, Arne;De Corte, Wouter
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.45-58
    • /
    • 2017
  • This paper presents the application of topology optimization as a design tool for a steel railway bridge. The choice of a steel railway bridge is dictated by the particular situation that it is suitable for topology optimization design. On the one hand, the current manufacturing techniques for steel structures (additive manufacturing techniques not included) are highly appropriate for material optimization and weight reduction to improve the overall structural efficiency, improve production efficiency, and reduce costs. On the other hand, the design of a railway bridge, especially at higher speeds, is dominated by minimizing the deformations, this being the basic principle of compliance optimization. However, a classical strategy of topology optimization considers typically only one or a very limited number of load cases, while the design of a steel railway bridge is characterized by relatively concentrated convoy loads, which may be present or absent at any location of the structure. The paper demonstrates the applicability of considering multiple load configurations during topology optimization and proves that a different and better optimal layout is obtained than the one from the classical strategy.

A Study on The Reduction of Cycle Time in Injection Molding Process of The Monitor Backcover (Monitor backcover의 사출시간 단축에 관한 연구)

  • Kim J. K.;Kim J. S.;Yoon K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.269-272
    • /
    • 2004
  • The present study used a diagrammatic analysis of 6 sigma quality control and Taguchi method for injection molding process of monitor back-cover, evaluated the influence on the cycle time with part design, mold design, molding process and standardization activity involving design & molding, adopted analysis of sensitivity and effective factors of the part design and molding process conditions for productivity, identified main design molding factors, as critical ones influencing on the quality and productivity, of which is summarized as design guidance. The main contribution factors for cycle time can be sequentially enumerated as follows; hot spot, part thickness, coolant inlet temperature, melt temperature cooling line layout, etc.. As a first step critical factors of the design process of current monitor housing were investigated. And the optimal and better critical factors found in the first step were applied to a new product proving our process was correct. Moldflow software was used for injection molding simulation, and Minitab software for the statistical analysis. Finally, the productivity was increased by about 33 percents for our specific case.

  • PDF

Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements (매스콘크리트 시험체의 수화열 해석 및 실험)

  • 주영춘;김은겸;신치범;조규영;박용남
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.