• Title/Summary/Keyword: Optimal Launch Angle Sequence

Search Result 2, Processing Time 0.018 seconds

Study on a Noble Methodology for the Automatic Decision of Optimal Launch Angle Sequence under Multi-Target Engagement (다수 표적 연속교전 상황에서의 최적 발사각 Sequence 결정 개념 연구)

  • Ryu, Sunmee
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.133-146
    • /
    • 2016
  • To engage multiple missiles in single launcher against multiple targets, launcher system has to operate for optimized launch angle to each target sequentially. If the launch angle sequence is simply defined according to the target assignment order only, overall engagement time would be increased, and even in some engagement scenarios, it could be possible to miss some moving targets being out of proper engagement area. Therefore, the study on methodology for a real-time decision of optimized launch angle sequence is necessary. In this paper, the automatic decision model of launch angle sequence was suggested to minimize total engagement time by analyzing the simulation results of all engagement sequence set for multiple moving target scenario. Performance of proposed methodology for decision of optimal launch angle sequence was verified by comparing with the optimal or suboptimal sequence obtained from simulation results.

Thermal and Dynamic Analyses of a Composite Optical Bench (복합재료 광학탑재 위성구조체의 열변형 및 동적특성)

  • Ahn, Jin-Hee;Kim, Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.161-164
    • /
    • 2005
  • This paper finds the optimal staking sequence of the satellite composite structures to minimize severe thermal deformations during their orbital operation using GAs and finite element analyses. Then, the optimal design is reinforced to endure the launch loads like high inertia and vibratory loads that are, usually, smaller than orbital loads induced by space environments. The thermal deformation of sandwich panels was minimized at the staking sequence of [$0_2$/90]s and that of composite strut was lowest at the angle of [0/${\pm}45$]s Also there was no buckling in the compressive loading. By vibration analysis, the natural frequencies of the composite components are much higher than aluminum structures and the expected stiffness condition is satisfied. Then, a composite optical bench was fabricated for tests and all analyses results were verified by structural testing. There were good correlations between two results.

  • PDF