• 제목/요약/키워드: Optimal Frequency Analysis

검색결과 681건 처리시간 0.031초

초음파 금속 용착을 위한 공구혼의 최적설계 (Optimal Design of Tool Horn for Ultrasonic Metal Welding)

  • 장호수;박우열;박동삼
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.263-267
    • /
    • 2011
  • Ultrasonic metal welding can be used to weld different metals together safely and precisely, without solder, flux and special preparation. Ultrasonic metal welding machine consists of a power supply, a transducer, a booster and a horn. This paper designed the horn needed for Ultrasonic metal welding. The horn has to be designed and manufactured accurately, because measurements such as the shape, length, mass and etc. have effects on the resonant frequency and the vibration mode. The designed horn has the feature of 40,000Hz of nature frequency, and maximizes vibration range in the Tip by resonance in the frequency of ultrasonic wave machine. In this paper, we calculated and analyzed the natural frequency to find the optimal design of the horn that had the amplitude about $12{\mu}m$ by the modal analysis and harmonic analysis using ANSYS. And we analyzed FFT analysis of the manufactured horn.

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • 한국농공학회지
    • /
    • 제45권5호
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

Analysis of Optimal Parameters for Hopping Pilot Beacon in a CDMA Mobile Cellular Network

  • Choi, Wan;Kim, Jin-Young
    • 한국ITS학회 논문지
    • /
    • 제6권1호
    • /
    • pp.47-57
    • /
    • 2007
  • In this paper, optimal parameters of a hopping pilot beacon are analyzed in a CDMA mobile cellular network. The hopping pilot beacon is used for inter-frequency handoff. It can reduce the number of pilot beacons needed for the inter-frequency handoff by transmitting neighbor frequency pilots periodically through a pilot beacon. The optimal parameters for transmission time and period of the hopping pilot bacon are derived by mathematical approach. It is highly recommended that the optimal values for the hopping pilot beacon under various operation environments.

  • PDF

L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 - (Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments -)

  • 이순혁;윤성수;맹승진;류경식;주호길;박진선
    • 한국농공학회논문집
    • /
    • 제46권5호
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.

유용방향법 최적화 알고리즘을 사용한 고유진동수에 대한 구조 최적설계 FEA 모듈 개발 (Structure Optimization FEA Code Development Under Frequency Constraints by Using Feasible Direction Optimization Method)

  • 조희근
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.63-69
    • /
    • 2013
  • In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However in the most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleigh-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculates the optimal thickness and the thickness ratio of individual elements of the 2-D plane element through a parallel algorithm method which satisfy the design constraint of natural frequency. As a result this method of optimization for natural frequency by using finite element method can determine the optimal size or its ratio of geometrically complicated shape and large scale structure.

민간도해석에 의한 자동차 현가장치의 성능개선에 관한 연구 (Performance improvement of a vehicle suspension by sensitivity analysis)

  • 송척기;박호;오재응;염성하
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1464-1473
    • /
    • 1990
  • Optimal design parameters are estimated from the sensitivity function and performance index variation. Suspension design modification for performance improvement and basic materials for practical applications are presented. The linear quarter model of a vehicle suspension is analyzed in order to represent the utilities of sensitivity analysis, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. As an investigation results of sensitivity function for the vibrational amplitude of sprung mass to road profile input, it is shown that the most sensitive parameters are the suspension damping and the suspension stiffness. In order to identify the effects of these two parameters to the performance of suspension system, the performance index variation according to the changes of parameters is considered and then optimal design parameters are determined. It is verified that the system response is improved noticeably in the both of frequency and time domain after the design modification with the optimal parameters.

금속 용착을 위한 초음파 가공용 한파장 스텝 혼의 설계 (One-wave Step Horn Design for Ultrasonic Machining for Metal Welding)

  • 백시영;장성민
    • 한국산학기술학회논문지
    • /
    • 제11권12호
    • /
    • pp.4735-4741
    • /
    • 2010
  • 초음파 금속 용착은 신소재, 도금 구조물 등과 같은 다양한 재료의 용착에 대한 가능성 때문에 광범위한 분야에서 사용되고 있으며 용착 조건도 다양하다. 본 연구에서는, 이종 금속 박판의 초음파 금속 용착을 위해 설계된 단부가형 한파장 혼은 유한요소해석 하였다. 유한유소해석은 초음파 혼의 최적 설계와 초음파 공구혼의 고유 주파수를 예상하기 위해 사용되었다. 그리고 설계된 한파장 스텝 혼은 고유 주파수 분석 시스템을 사용하여 실험적으로 검증하였다.

엔진 마운트의 동특성 해석 및 최적설계 시스템 (Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems)

  • 임홍재;성상준;이상범
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

Optimum Superimposed Training for Mobile OFDM Systems

  • Yang, Qinghai;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2009
  • Superimposed training (SIT) design for estimating of time-varying multipath channels is investigated for mobile orthogonal frequency division multiplexing (OFDM) systems. The design of optimum SIT consists of two parts: The optimal SIT sequence is derived by minimizing the channel estimates' mean square error (MSE); the optimal power allocation between training and information data is developed by maximizing the averaged signal to interference plus noise ratio (SINR) under the condition of equal powered paths. The theoretical analysis is verified by simulations. For the metric of the averaged SINR against signal to noise ratio (SNR), the theoretical result matches the simulation result perfectly. In contrast to an interpolated frequency-multiplexing training (FMT) scheme or an SIT scheme with random pilot sequence, the SIT scheme with proposed optimal sequence achieves higher SINR. The analytical solution of the optimal power allocation is demonstrated by the simulation as well.