• 제목/요약/키워드: Optimal Dose

검색결과 561건 처리시간 0.028초

옥수수 생육에 미치는 저선량 감마선 조사효과 (Influence of Low Dose Gamma Radiation on the Growth of Maize(Zea mays L.) Varieties)

  • 김재성;이영근;박홍숙;백명화;김동희
    • 한국환경농학회지
    • /
    • 제19권4호
    • /
    • pp.328-331
    • /
    • 2000
  • 국내에서 재배중인 옥수수 재래종 (고성, 영월)품종의 종자에 저선량 ${\gamma}$선을 조사하여 초기생육과 수량에 미치는 영향을 온실과 포장실험으로 조사하였다. 저선량 방사선 조사가 옥수수 종자발아 및 초기생육에서 뚜렷한 촉진효과를 보였으나 품종별로 다소 차이가 있었으며 고성재래종은 2 Gy, 영월재래종은 12 Gy가 가장 효과적이었다. 포장생장과 수량에서도 저선량 조사에 의해 증가하는 경향을 보였는데 적정선량은 고성재래종은 8 Gy, 영월재래종은 $4{\sim}12$ Gy 범위로 나타났다.

  • PDF

Optimal Initial Dose of Chloral Hydrate in Management of Pediatric Facial Laceration

  • Koo, Su Han;Lee, Dong Gwan;Shin, Heakyeong
    • Archives of Plastic Surgery
    • /
    • 제41권1호
    • /
    • pp.40-44
    • /
    • 2014
  • Background Chloral hydrate (CH) is the primary agent most commonly used for pediatric sedation prior to diagnostic, therapeutic procedures. In the management of pediatric facial laceration, the initial dose of CH has to balance the need for adequate sedation against the need to minimize sedative complications. Methods A retrospective review of medical records of 834 children who visited our emergency room for facial lacerations from August 2010 to September 2012 was conducted. They were divided into six groups on the basis of the initial dose of CH administered. Further, each group was compared with the standard group (70 to ${\leq}80mg/kg$) with respect to sedation success, augmentation dose, failed sedation, time to procedure, and time of stay. Results With respect to the complication rate, only group 1 (range, 40 to ${\leq}50mg/kg$) showed a significantly lower complication rate. In the case of all the other variables considered, there were no significant differences among any of the groups. Conclusions An initial CH dose of $48{\pm}2mg/kg$ does not negatively affect the success rate of sedation or the need for additional sedative during the primary closure of facial lacerations in pediatric patients. Further, lower doses reduce the incidences of adverse effects and do not delay procedure readiness. Therefore, $48{\pm}2mg/kg$ of CH can be considered the optimal initial dose for pediatric sedation.

두부 CT검사에서의 노이즈 및 화질분석 (Noise and Image Quality Analysis of Brain CT Examination)

  • 최석윤;임인철
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권4호
    • /
    • pp.279-284
    • /
    • 2019
  • The purpose of this study was to find the best protocol for balance of image quality and dose in brain CT scan. Images were acquired using dual-source CT and AAPM water phantom, noise and dose were measured, and effective dose was calculated using computer simulation program ALARA(S/W). In order to determine the ratio of image quality and dose by each protocol, FOM (figure of merits) equation with normalized DLP was presented and the result was calculated. judged that the ratio of image quality and dose was excellent when the FOM maximized. Experimental results showed that protocol No. 21(120 kVp, 10 mm, 1.5 pitch) was the best, the organ with the highest effective dose was the brain(33.61 mGy). Among organs with high radiosensitivity, the thyroid gland was 0.78 mGy and breast 0.05 mGy. In conclusion, the optimal parameters and the organ dose in the protocol were also presented from the experiment, It may be helpful to clinicians who want to know the protocol about the optimum state of image quality and dose.

A Study on Estimation of Radiation Exposure Dose During Dismantling of RCS Piping in Decommissioning Nuclear Power Plant

  • Lee, Taewoong;Jo, Seongmin;Park, Sunkyu;Kim, Nakjeom;Kim, Kichul;Park, Seongjun;Yoon, Changyeon
    • 방사성폐기물학회지
    • /
    • 제19권2호
    • /
    • pp.243-253
    • /
    • 2021
  • In the dismantling process of a reactor coolant system (RCS) piping, a radiation protection plan should be established to minimize the radiation exposure doses of dismantling workers. Hence, it is necessary to estimate the individual effective dose in the RCS piping dismantling process when decommissioning a nuclear power plant. In this study, the radiation exposure doses of the dismantling workers at different positions was estimated using the MicroShield dose assessment program based on the NUREG/CR-1595 report. The individual effective dose, which is the sum of the effective dose to each tissue considering the working time, was used to estimate the radiation exposure dose. The estimations of the simulation results for all RCS piping dismantling tasks satisfied the dose limits prescribed by the ICRP-60 report. In dismantling the RCS piping of the Kori-1 or Wolsong-1 units in South Korea, the estimation and reduction method for the radiation exposure dose, and the simulated results of this study can be used to implement the radiation safety for optimal dismantling by providing information on the radiation exposure doses of the dismantling workers.

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • 제46권1호
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

핵의학검사의 방사성의약품 소아투여량 공식 별 투여량 및 유효선량 비교 (Comparing of the Administered Activities and the Effective Dose of the Various Pediatric Dose Formulas of Nuclear Medicine)

  • 길종원
    • 한국융합학회논문지
    • /
    • 제8권8호
    • /
    • pp.147-154
    • /
    • 2017
  • 본 연구는 소아핵의학검사에 사용하는 다양한 소아투여량 공식의 투여량(MBq)과 유효선량(mSv)을 산출 비교하여 적정투여량의 기준을 위한 기초자료를 제공하고자 한다. 연구는 2가지 방사성의약품($^{99m}Tc$-MDP와 $^{99m}Tc$-Pertechnetate)의 성인투여량을 기준으로 5가지 소아투여량공식(Clark법, Area법, Webster법, Young법, Solomon(Fried)법) 간 투여량과 유효선량을 비교하였다. 소아투여량 산출에 기준이 되는 성인투여량은 정준기, 이명철 '핵의학'에 수록된 값을 사용하였으며, 유효선량 산출을 위한 방사성의약품의 방사능당 유효선량(mSv/MBq)은 ICRP 80과 UNSCEAR 2008 보고서에 수록된 값을 사용하였다. 연구결과 Young법이 산출량이 가장 적으며 다른 공식과의 차이는 최소 1.7배-최대 3.4배였다. $^{99m}Tc$-MDP의 공식 간 투여량 차이는 최대 309.9MBq, 유효선량은 3.76mSv, $^{99m}Tc$-Pertechnetate는 최대 154.9MBq, 유효선량은 5.50mSv였다. 소아투여량 공식 간 투여량뿐만 아니라 유효선량도 차이가 크기 때문에 의료방사선의 최적화를 위한 적정투여량 소아산출법이 개발되어야 한다.

검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안 (Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction)

  • 김상현
    • 한국방사선학회논문지
    • /
    • 제17권7호
    • /
    • pp.1025-1031
    • /
    • 2023
  • 저선량흉부 CT (Low Dose chest CT, LDCT)에서 Scout 관전압을 변화시키고 scan parameter인 자동노출제어장치(Auto Exposure Control, AEC)와 적응식 반복재구성기법(Adaptive Statistical Iterative Reconstruction, ASIR)등을 적용하여 최적의 프로토콜을 찾음으로써 방사선 피폭선량과 화질을 평가하고자 하였다. Scout 관전압을 80, 100, 120, 140 kV로 변화시키며 LDCT 프로토콜로 5회 반복 측정 후 선량을 비교하기 위해 장비에서 제공된 Dose report를 이용하여 연구 목적에 적합한 관전압을 선택하였다. 120 kV, 30 mAs의 조건으로 기본 LDCT 촬영한 후, 이 조건에 ASIR 50%를 적용하였으며 신호대잡음비와 대조도대잡음비를 평가하기 위해 배경의 노이즈를 측정하였다. 선량 비교를 위해 장비에서 제공되는 CTDIvol과 선량길이곱(Dose length product, DLP)를 식을 이용하여 비교 분석하였다. 그 결과 S140 + LDCT + ASIR 50 + AEC를 적용한 프로토콜에서 고식적인 LCDT보다 방사선 피폭선량을 감소시키고 영상의 질을 향상시켰으며 최적의 프로토콜을 얻을 수 있었으며 LDCT는 매 검사 시 필요 이상의 피폭선량이 우려되기 때문에 적절한 Parameter를 적용하는 것이 중요하며, 향후 LDCT를 이용한 건강검진에서 국민의 건강에 이바지 하는데 긍정적인 요인으로 작용될 것으로 사료된다.

심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가 (Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography)

  • 조용인
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권6호
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.