• 제목/요약/키워드: Optimal Deployment

검색결과 168건 처리시간 0.024초

효율적 자원 배치를 위한 이동객체의 최적 이동패턴 추출 (Optimal Moving Pattern Extraction of the Moving Object for Efficient Resource Allocation)

  • 조호성;남광우;장민석;이연식
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.689-692
    • /
    • 2021
  • 본 논문은 Fog/Edge Computing(FEC) 환경에서 애플리케이션 서비스의 사용자 근접성을 지원하는 컴퓨팅 리소스의 최적 할당 및 지연시간 감소를 위한 이동에이전트 기반 오프로딩의 효율성을 제고하기 위한 선행연구로써, 이동객체들의 방대한 시공간 이동 이력데이터 집합으로부터 복합적인 시공간 제약을 적용한 최적 이동패턴 추출 시 수행시간 및 소요 메모리양을 효과적으로 감소시키는 알고리즘을 제안한다. 제안 알고리즘은 빈발도 기반의 최적경로 추출을 통하여 향후 FEC 환경에서 계산 오프로딩을 위한 컴퓨팅 리소스의 분배 및 배치에 유용하게 사용될 수 있다.

  • PDF

모바일 어플리케이션을 이용한 재난상황 발생 시 최적 대피경로 설정 (A Mobile Application for Navigating the Optimal Escape Route in Accidents and Emergency Situations)

  • 조성현;주기돈;강훈;박교식;신동일
    • 한국위험물학회지
    • /
    • 제3권1호
    • /
    • pp.28-36
    • /
    • 2015
  • In early 2011, the Fukushima nuclear power plant had greater damage due to earthquake in Japan, and the awareness of safety has increased. In particular, special response systems should be required to handle disaster situations in plant sites which are likely to occur for large disasters. In this study, a program is designed to set up optimum escape routes, by a smart phone application, when a disaster situation occurs. This program could get information of the cumulative damage from sensors and display the escape route of the smallest damage in real-time on the screen. Utilizing our application in real-time evacuation has advantage in reducing cumulative damage. The optimal evacuation route, focusing on horizontal path, is calculated based on getting the data of fire, detected radioactivity and hazardous gas. Thus, using our application provides information of optimal evacuation to people who even can not hear sensor alarms or do not know geography, without requiring additional costs except fixed sensors or server network deployment cost. As a result, being informed of real-time escape route, the user could behave rapidly with suitable response to individual situation resulting in improved evacuation than simply reacting to existing warning alarms.

Information entropy based algorithm of sensor placement optimization for structural damage detection

  • Ye, S.Q.;Ni, Y.Q.
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.443-458
    • /
    • 2012
  • The structural health monitoring (SHM) benchmark study on optimal sensor placement problem for the instrumented Canton Tower has been launched. It follows the success of the modal identification and model updating for the Canton Tower in the previous benchmark study, and focuses on the optimal placement of vibration sensors (accelerometers) in the interest of bettering the SHM system. In this paper, the sensor placement problem for the Canton Tower and the benchmark model for this study are first detailed. Then an information entropy based sensor placement method with the purpose of damage detection is proposed and applied to the benchmark problem. The procedure that will be implemented for structural damage detection using the data obtained from the optimal sensor placement strategy is introduced and the information on structural damage is specified. The information entropy based method is applied to measure the uncertainties throughout the damage detection process with the use of the obtained data. Accordingly, a multi-objective optimal problem in terms of sensor placement is formulated. The optimal solution is determined as the one that provides equally most informative data for all objectives, and thus the data obtained is most informative for structural damage detection. To validate the effectiveness of the optimally determined sensor placement, damage detection is performed on different damage scenarios of the benchmark model using the noise-free and noise-corrupted measured information, respectively. The results show that in comparison with the existing in-service sensor deployment on the structure, the optimally determined one is capable of further enhancing the capability of damage detection.

Self Organization of Sensor Networks for Energy-Efficient Border Coverage

  • Watfa, Mohamed K.;Commuri, Sesh
    • Journal of Communications and Networks
    • /
    • 제11권1호
    • /
    • pp.57-71
    • /
    • 2009
  • Networking together hundreds or thousands of cheap sensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. As sensor nodes are typically battery operated, it is important to efficiently use the limited energy of the nodes to extend the lifetime of the wireless sensor network (WSN). One of the fundamental issues in WSNs is the coverage problem. In this paper, the border coverage problem in WSNs is rigorously analyzed. Most existing results related to the coverage problem in wireless sensor networks focused on planar networks; however, three dimensional (3D) modeling of the sensor network would reflect more accurately real-life situations. Unlike previous works in this area, we provide distributed algorithms that allow the selection and activation of an optimal border cover for both 2D and 3D regions of interest. We also provide self-healing algorithms as an optimization to our border coverage algorithms which allow the sensor network to adaptively reconfigure and repair itself in order to improve its own performance. Border coverage is crucial for optimizing sensor placement for intrusion detection and a number of other practical applications.

휴대용 RFID 리더기를 활용한 분실 의료자산 최적 검색 경로 결정과 천정 고정식 리더기 설치위치 선정 방안 연구 (A Study on Optimal Searching Path Using Handheld RFID Reader and Deployment of a Stationary Reader to Maximize the Efficiency of the Search Process for Missing Medical Assets)

  • 김각규;조성진;윤봉규
    • 한국경영과학회지
    • /
    • 제37권4호
    • /
    • pp.95-109
    • /
    • 2012
  • Being able to quickly locate valuable medical equipment is critical inside hospitals. In order to utilize limited budget and resources efficiently, accurate locating or tracking is required in many fields. In this research, we focus on how to find the location of missing assets by using RFID in real time indoors to track equipment. When equipment needs to be searched, the purpose of a RFID device is to minimize the time, investment cost and effort spent searching for the equipment. Thus, this research presents a mathematical model of using RFID (both handheld reader and stationary reader) for efficient asset location. We derive the expected time of locating RFID-tagged objects in a multi-area environment where hand-held RF readers are used. We then discuss where to deploy stationary RF readers in order to maximize the efficiency of the search process.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.

Optimized Charging in Large-Scale Deployed WSNs with Mobile Charger

  • Qin, Zhenquan;Lu, Bingxian;Zhu, Ming;Sun, Liang;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5307-5327
    • /
    • 2016
  • Restricted by finite battery energy, traditional wireless sensor networks (WSNs) can only maintain for a limited period of time, resulting in serious performance bottleneck in long-term deployment of WSN. Fortunately, the advancement in the wireless energy transfer technology provides a potential to free WSNs from limited energy supply and remain perpetual operational. A mobile charger called wireless charging vehicle (WCV) is employed to periodically charge each sensor node and keep its energy level above the minimum threshold. Aiming at maximizing the ratio of the WCV's vocation time over the cycle time as well as guaranteeing the perpetual operation of networks, we propose a feasible and optimal solution to this issue within the context of a real-time large-scale deployed WSN. First, we develop two different types of charging cycles: initialization cycles and renewable cycles and give relevant algorithms to construct these two cycles for each sensor node. We then formulate the optimization problem into an optimal construction algorithm and prove its correctness through theoretical analysis. Finally, we conduct extensive simulations to demonstrate the effectiveness of our proposed algorithms.

Optimal Solution Algorithm for Delivery Problem on Graphs

  • Lee, Kwang-Eui
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권3호
    • /
    • pp.111-117
    • /
    • 2021
  • 그래프에서의 배달문제는 m개의 정점으로 구성된 그래프에서 n개의 서로 다른 속도를 갖는 로봇 에이전트들을 이용하여 배달물을 그래프의 한 노드에서 다른 노드로 배달하는 최소 배달순서를 구하는 문제이다. 본 논문에서는 그래프에서의 배달문제에 대하여 최적해를 계산하는 O(㎥n)과 O(㎥)시간복잡도를 갖는 두 개의 알고리즘을 제안한다. 알고리즘은 그래프의 모든 쌍에 대한 최단경로를 구하는 전처리를 한 후, 최소배달시간이 작은 정점의 순으로 최단배달경로를 구하는 방법으로 개발하였다. 이 문제에서 그래프가 문제를 해결하고자 하는 지형을 반영하고 있다고 하면, 다양한 로봇 에이전트의 배치에 대하여 전처리를 1회만 실행되면 되므로 O(㎥) 알고리즘은 실제로 O(㎡n)의 시간복잡도를 갖는다고 할 수 있다.

Deep Neural Network-Based Critical Packet Inspection for Improving Traffic Steering in Software-Defined IoT

  • 담프로힘;맛사;김석훈
    • 인터넷정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.1-8
    • /
    • 2021
  • With the rapid growth of intelligent devices and communication technologies, 5G network environment has become more heterogeneous and complex in terms of service management and orchestration. 5G architecture requires supportive technologies to handle the existing challenges for improving the Quality of Service (QoS) and the Quality of Experience (QoE) performances. Among many challenges, traffic steering is one of the key elements which requires critically developing an optimal solution for smart guidance, control, and reliable system. Mobile edge computing (MEC), software-defined networking (SDN), network functions virtualization (NFV), and deep learning (DL) play essential roles to complementary develop a flexible computation and extensible flow rules management in this potential aspect. In this proposed system, an accurate flow recommendation, a centralized control, and a reliable distributed connectivity based on the inspection of packet condition are provided. With the system deployment, the packet is classified separately and recommended to request from the optimal destination with matched preferences and conditions. To evaluate the proposed scheme outperformance, a network simulator software was used to conduct and capture the end-to-end QoS performance metrics. SDN flow rules installation was experimented to illustrate the post control function corresponding to DL-based output. The intelligent steering for network communication traffic is cooperatively configured in SDN controller and NFV-orchestrator to lead a variety of beneficial factors for improving massive real-time Internet of Things (IoT) performance.

악성 간문부 담도 폐쇄에서 내시경 배액술의 최근 경향 (Trends of Endoscopic Palliation for Advanced Malignant Hilar Biliary Obstruction)

  • 이태훈
    • The Korean Journal of Medicine
    • /
    • 제99권1호
    • /
    • pp.4-10
    • /
    • 2024
  • Malignant hilar biliary obstruction (MHO), an aggressive type of perihilar biliary obstruction caused by cholangiocarcinoma, gallbladder cancer, or other metastatic malignancies, has a poor prognosis. Surgical resection is the only curative treatment for biliary malignancies. However, most patients with MHO cannot undergo surgery upon presentation because of their advanced inoperable state or poor performance resulting from old age or comorbid diseases. Therefore, palliative biliary drainage is required to improve symptomatic jaundice and quality of life. Preoperative biliary drainage is controversial in resectable cases of MHO. Preoperative biliary drainage should be considered according to specific selection criteria. Palliative drainage is currently the mainstay of symptomatic treatment. Compared with percutaneous access, primary endoscopic palliation using plastic or metal stents has recently shown higher technical feasibility and clinical success without increasing the frequency of adverse events, even in high-degree MHO. However, the use of stents still has numerous limitations, including challenges in determining the optimal type of stent, number of stents, deployment method, and additional local therapies. Therefore, this report presents the current optimal endoscopic drainage status for MHO based on recent guidelines and published literature.