• Title/Summary/Keyword: Optimal Deployment

Search Result 168, Processing Time 0.031 seconds

Enhanced Hybrid XOR-based Artificial Bee Colony Using PSO Algorithm for Energy Efficient Binary Optimization

  • Baguda, Yakubu S.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.312-320
    • /
    • 2021
  • Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.

Adaptive and optimized agent placement scheme for parallel agent-based simulation

  • Jin, Ki-Sung;Lee, Sang-Min;Kim, Young-Chul
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.313-326
    • /
    • 2022
  • This study presents a noble scheme for distributed and parallel simulations with optimized agent placement for simulation instances. The traditional parallel simulation has some limitations in that it does not provide sufficient performance even though using multiple resources. The main reason for this discrepancy is that supporting parallelism inevitably requires additional costs in addition to the base simulation cost. We present a comprehensive study of parallel simulation architectures, execution flows, and characteristics. Then, we identify critical challenges for optimizing large simulations for parallel instances. Based on our cost-benefit analysis, we propose a novel approach to overcome the performance constraints of agent-based parallel simulations. We also propose a solution for eliminating the synchronizing cost among local instances. Our method ensures balanced performance through optimal deployment of agents to local instances and an adaptive agent placement scheme according to the simulation load. Additionally, our empirical evaluation reveals that the proposed model achieves better performance than conventional methods under several conditions.

Trends of Daylight Environment for Office Spaces Based on Smart-Window Installation Settings (스마트 윈도우 설치 속성에 따른 사무공간의 주광 환경 추이)

  • Jae-Hyang Kim;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.13-21
    • /
    • 2023
  • Smart windows are capable of varying their visible light transmittance (VLT) in response to changing environmental conditions. The VLT variability of architectural windows is highly valuable because it enables indoor lighting and energy environments to align with external changes. However, challenges such as high installation costs and assurance of glass visibility have prompted the exploration of alternative solutions, including models incorporating partially applied smart windows., Prior research focused on useful daylight illuminance (UDI) analysis for south-facing office buildings, pointing out suitable areas for smart-window implementation to enhance lighting control. In this study, we broadened this scope by determining optimal smart-window application zones under changing building orientation. Furthermore, we studied the correlation between building orientation and smart-window deployment areas.

Research on the Application of Load Balancing in Educational Administration System

  • Junrui Han;Yongfei Ye
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.702-712
    • /
    • 2023
  • Load balancing plays a crucial role in ensuring the stable operation of information management systems during periods of high user access requests; therefore, load balancing approaches should be reasonably selected. Moreover, appropriate load balancing techniques could also result in an appropriate allocation of system resources, improved system service, and economic benefits. Nginx is one of the most widely used loadbalancing software packages, and its deployment is representative of load-balancing application research. This study introduces Nginx into an educational administration system, builds a server cluster, and compares and sets the optimal cluster working strategy based on the characteristics of the system, Furthermore, it increases the stability of the system when user access is highly concurrent and uses the Nginx reverse proxy service function to improve the cluster's ability to resist illegal attacks. Finally, through concurrent access verification, the system cluster construction becomes stable and reliable, which significantly improves the performance of the information system service. This research could inform the selection and application of load-balancing software in information system services.

KubEVC-Agent : Kubernetes Edge Vision Cluster Agent for Optimal DNN Inference and Operation (KubEVC-Agent : 머신러닝 추론 엣지 컴퓨팅 클러스터 관리 자동화 시스템)

  • Moohyun Song;Kyumin Kim;Jihun Moon;Yurim Kim;Chaewon Nam;Jongbin Park;Kyungyong Lee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.293-301
    • /
    • 2023
  • With the advancement of artificial intelligence and its various use cases, accessing it through edge computing environments is gaining traction. However, due to the nature of edge computing environments, efficient management and optimization of clusters distributed in different geographical locations is considered a major challenge. To address these issues, this paper proposes a centralization and automation tool called KubEVC-Agent based on Kubernetes. KubEVC-Agent centralizes the deployment, operation, and management of edge clusters and presents a use case of the data transformation for optimizing intra-cluster communication. This paper describes the components of KubEVC-Agent, its working principle, and experimental results to verify its effectiveness.

Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination

  • Wooseob Kim
    • IMMUNE NETWORK
    • /
    • v.24 no.4
    • /
    • pp.28.1-28.13
    • /
    • 2024
  • Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNA-based vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants.

A Study on the Repair Parts Inventory Cost Estimation and V-METRIC Application for PBL Contract (PBL 계약을 위한 수리부속 재고비용 예측과 V-METRIC의 활용에 관한 연구)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • For the PBL contract, it is necessary for the contracting parties to share information regarding the reasonable inventory-level and the cost of its repair parts for the estimated demand. There are various models which can be used for this purpose. Among them, V-METRIC model is considered to be the most efficient and is most frequently applied. However, this model is usually used for optimizing the inventory level of the repair parts of the system under operation. The model uses a time series forecast model to determine the demand rate, which is a mandatory input factor for the model, based on past field data. However, since the system at the deployment stage has no operational performance record, it is necessary to find another alternative to be used as the demand rate of the model application. This research applies the V-METRIC model to find the optimal inventory level and cost estimation for repairable items to meet the target operational availability, which is a key performance indicator, at the time of the PBL contract for the deployment system. This study uses the calculated value based on the allocated MTBF to the system as the demand rate, which is used as input data for the model. Also, we would like to examine changes in inventory level and cost according to the changes in target operational availability and MTBF allocation.

Comparison of Active Sonar Target Positioning Performance and Optimal Sensor Arrangement (능동 소나 위치 추정 성능 비교 및 최적 수신망 배치)

  • 박치현;홍우영;고한석;김인익
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.224-232
    • /
    • 2003
  • In this paper, efficient deployment method of sensors and target positioning performance with respect to measurement error are dealt with. Active sonar can be categorized into Monostatic, Bistatic, Multistatic sonar, and characteristics of respective sonar are different. Assuming that each sensor can receive range and angular information, we compare the performance of Monostatic, Bistatic, and Multistatic systems. And we suggest Weighted least square (WLS) which gives the weight to former case, LS. In particular. adopting suggested method we investigate the target positioning performance according to number of sensor, distance from transmitter to receiver, and propose efficient arrangement rule for Multistatic sonar configurations. According to the experimental results, RMSE of Multistatic sonar is found to be superior to Monostatic and Bistatic by 35.98%. 37.45% respectively, and WLS is superior to LS approximately by 7.4% in average. Furthermore, as the difference of respective sensor's variance is large, it is observed that the improvement ratio of target positioning performance is increased.

A Methodology for Task placement and Scheduling Based on Virtual Machines

  • Chen, Xiaojun;Zhang, Jing;Li, Junhuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1544-1572
    • /
    • 2011
  • Task placement and scheduling are traditionally studied in following aspects: resource utilization, application throughput, application execution latency and starvation, and recently, the studies are more on application scalability and application performance. A methodology for task placement and scheduling centered on tasks based on virtual machines is studied in this paper to improve the performances of systems and dynamic adaptability in applications development and deployment oriented parallel computing. For parallel applications with no real-time constraints, we describe a thought of feature model and make a formal description for four layers of task placement and scheduling. To place the tasks to different layers of virtual computing systems, we take the performances of four layers as the goal function in the model of task placement and scheduling. Furthermore, we take the personal preference, the application scalability for a designer in his (her) development and deployment, as the constraint of this model. The workflow of task placement and scheduling based on virtual machines has been discussed. Then, an algorithm TPVM is designed to work out the optimal scheme of the model, and an algorithm TEVM completes the execution of tasks in four layers. The experiments have been performed to validate the effectiveness of time estimated method and the feasibility and rationality of algorithms. It is seen from the experiments that our algorithms are better than other four algorithms in performance. The results show that the methodology presented in this paper has guiding significance to improve the efficiency of virtual computing systems.

Understanding the Current State of Deep Learning Application to Water-related Disaster Management in Developing Countries

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.145-145
    • /
    • 2022
  • Availability of abundant water resources data in developing countries is a great concern that has hindered the adoption of deep learning techniques (DL) for disaster prevention and mitigation. On the contrary, over the last two decades, a sizeable amount of DL publication in disaster management emanated from developed countries with efficient data management systems. To understand the current state of DL adoption for solving water-related disaster management in developing countries, an extensive bibliometric review coupled with a theory-based analysis of related research documents is conducted from 2003 - 2022 using Web of Science, Scopus, VOSviewer software and PRISMA model. Results show that four major disasters - pluvial / fluvial flooding, land subsidence, drought and snow avalanche are the most prevalent. Also, recurrent flash floods and landslides caused by irregular rainfall pattern, abundant freshwater and mountainous terrains made India the only developing country with an impressive DL adoption rate of 50% publication count, thereby setting the pace for other developing countries. Further analysis indicates that economically-disadvantaged countries will experience a delay in DL implementation based on their Human Development Index (HDI) because DL implementation is capital-intensive. COVID-19 among other factors is identified as a driver of DL. Although, the Long Short Term Model (LSTM) model is the most frequently used, but optimal model performance is not limited to a certain model. Each DL model performs based on defined modelling objectives. Furthermore, effect of input data size shows no clear relationship with model performance while final model deployment in solving disaster problems in real-life scenarios is lacking. Therefore, data augmentation and transfer learning are recommended to solve data management problems. Intensive research, training, innovation, deployment using cheap web-based servers, APIs and nature-based solutions are encouraged to enhance disaster preparedness.

  • PDF