• Title/Summary/Keyword: Optimal Control Technology

Search Result 1,619, Processing Time 0.028 seconds

Constant power. high power factor drive of DFIG for wind power generation in the wide wind speed (넓은 풍속에서의 풍력발전용 권선형 유도발전기의 정출력.고역률 운전)

  • Lee, Woo-Suk;Kim, Kwang-Tae;Chung, Soon-Yong;Shon, Je-Bong;Bae, Jong-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.693-695
    • /
    • 2000
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFIG) has good adaptivity for that purpose. This paper deals with power and power factor control using the Grid connected DFIG in the wide speed regions, by controlling frequency and voltage fed to the rotor. Power flow of the DFIG and steady-state algebraic equations of the equivalent circuit are analyzed. For a normal operating region, in which the generator ratings were not exceeded, the rotor current was either less than or equal to the rated value. Accordingly, the optimal power factor can be selected relative to the permissible rated current at the rotor coil which controls the magnitude of the injected rotor voltage to the rotor according to a given rotor frequency.

  • PDF

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

A Study on a Nonlinear Control Algorithm for the Automatic Berthing of Ships (선박 자동 이접안을 위한 비선형 제어알고리즘 연구)

  • Won, Moon-Cheol;Hong, Seong-Kuk;Jung, Yun-Ha;Kim, Sun-Young;Son, Nam-Sun;Yoon, Hyun-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.34-40
    • /
    • 2008
  • his study discusses the design of an automatic berthing control algorithm for ships with a haw thruster and a stern thruster, as well as a rudder. A nonlinear mathematical model for the law speed maneuvering of ships was used to design a MIMO (multi-input multi-output) nonlinear control algorithm. The algorithm consists of two parts, the forward velocity control and heading angle control. The control algorithm was designed based on the longitudinal and yaw dynamic models of ships. The desired heading angle was obtained by the so-called "Line of Sight" method. An optimal control force allocation method forthe rudder and the thrusters is suggested. The nonlinear control algorithm was tested by numerical simulations using MATLAB, and showed good tracking performance.

A Study on the Monitoring System for Engine Control by Measuring Combustion Pressure Continuously in All Cylinders

  • Miharat Yoshinori;Maruyama Yasuo;Okada Yutaka;Kido Hachiro;Nishida Osami;Fujita Hirotsugu;Ito Masakazu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.713-721
    • /
    • 2005
  • A marine diesel engine should realize optimal operation efficiency while reducing NOx, PM (Particulate Matters) and other emissions. Fuel injection systems that use electronic control can become an effective means of achieving that objective. However. it still needs some accurate and instant information in order to bring its ability into full potential while sailing on the sea. The important information of them are a shaft torque and continuous combustion pressures of all cylinders. The shaft torque and the propeller thrust described in this paper are measured at an intermediate shaft by using a unique principle that one of two electromagnet coils oscillates a vibrating strip which the length changes with force and the other coil picks up the change of the frequency of the vibrating strip. For further reference, the shaft power meter multiplied the torque by the shaft revolution has already had about 750 sets of sales performance. The research presented in this paper started about ten years ago and is concerned with the development of a combustion pressure sensor that uses the same principle. Recently, the pressure sensor which bears continuous operation has been developed after a hard struggle, that is, the system that consists of a shaft horsepower meter, a propeller thrust meter and a combustion pressure sensor has been completed and has been shown to be reliable. This paper describes the configuration of this system, the material of the combustion pressure sensor, the principle of that, and the improving point of the sensor, and, we finally consider the use of this system.

DGA Gases related to the Aging of Power Transformers for Asset Management

  • Kweon, Dongjin;Kim, Yonghyun;Park, Taesik;Kwak, Nohong;Hur, Yongho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.372-378
    • /
    • 2018
  • Life management technology is required as the failure risk of aged power transformers increases. Asset management technology is developed to evaluate the remaining life, establish the replacement strategies, and decide the optimal investment based on the reliability and economy of power transformers. The remaining life assessment uses data such as installation, operation, maintenance, refurbishment, and failure of power transformers. The optimal investment also uses data such as maintenance, outage, and social costs. To develop the asset management system for power transformers, determining the degradation parameters related to the aging of power transformers and evaluating the condition of power transformers using these parameters are important. In this study, since 1983, 110,000 Dissolved Gas Analysis (DGA) data have been analyzed to determine the degradation parameters related to the aging of power transformers. The alarm rates of combustible gases ($H_2$, $C_2H_2$, $C_2H_4$, $CH_4$, and $C_2H_6$), TCG, CO, and $CO_2$ were analyzed. The end of life and failure rate (bathtub curve) of power transformers were also calculated based on the failure data from 1981 to 2014. The DGA gases related to discharge, overheating, and insulation degradation were determined based on alarm and failure rates. $C_2H_2$, $C_2H_6$, and $CO_2$ were discharge, oxidation, and insulation degradation parameters related to the aging of power transformers.

Automatic control of coagulant dosage on the sedimentation and dissolved air flotation(SeDAF) process for enhanced phosphorus removal in sewage treatment facilities (하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토)

  • Jang, Yeoju;Jung, Jinhong;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.411-423
    • /
    • 2020
  • To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 ㎥/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision-making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 - 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.

Lyapunov-based Semi-active Control of Adaptive Base Isolation System employing Magnetorheological Elastomer base isolators

  • Chen, Xi;Li, Jianchun;Li, Yancheng;Gu, Xiaoyu
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.1077-1099
    • /
    • 2016
  • One of the main shortcomings in the current passive base isolation system is lack of adaptability. The recent research and development of a novel adaptive seismic isolator based on magnetorheological elastomer (MRE) material has created an opportunity to add adaptability to base isolation systems for civil structures. The new MRE based base isolator is able to significantly alter its shear modulus or lateral stiffness with the applied magnetic field or electric current, which makes it a competitive candidate to develop an adaptive base isolation system. This paper aims at exploring suitable control algorithms for such adaptive base isolation system by developing a close-loop semi-active control system for a building structure equipped with MRE base isolators. The MRE base isolator is simulated by a numerical model derived from experimental characterization based on the Bouc-Wen Model, which is able to describe the force-displacement response of the device accurately. The parameters of Bouc-Wen Model such as the stiffness and the damping coefficients are described as functions of the applied current. The state-space model is built by analyzing the dynamic property of the structure embedded with MRE base isolators. A Lyapunov-based controller is designed to adaptively vary the current applied to MRE base isolator to suppress the quake-induced vibrations. The proposed control method is applied to a widely used benchmark base-isolated structure by numerical simulation. The performance of the adaptive base isolation system was evaluated through comparison with optimal passive base isolation system and a passive base isolation system with optimized base shear. It is concluded that the adaptive base isolation system with proposed Lyapunov-based semi-active control surpasses the performance of other two passive systems in protecting the civil structures under seismic events.

Virtual Brake Pressure Sensor Using Vehicle Yaw Rate Feedback (차량 요레이트 피드백을 통한 가상 제동 압력 센서 개발)

  • You, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.113-120
    • /
    • 2016
  • This paper presents observer-based virtual sensors for YMC(Yaw Moment Control) systems by differential braking. A high-fidelity empirical model of the hydraulic unit in YMC system was developed for a model-based observer design. Optimal, adaptive, and robust observers were then developed and their estimation accuracy and robustness against model uncertainty were investigated via HILS tests. The HILS results indicate that the proposed disturbance attenuation approach indeed exhibits more satisfactory pressure estimation performance than the other approach with admissible degradation against the predefined model disturbance.

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF

Optimal Coordination of Intermittent Distributed Generation with Probabilistic Power Flow

  • Xing, Haijun;Cheng, Haozhong;Zhang, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2211-2220
    • /
    • 2015
  • This paper analyzes multiple active management (AM) techniques of active distribution network (ADN), and proposes an optimal coordination model of intermittent distributed generation (IDG) accommodation considering the timing characteristic of load and IDG. The objective of the model is to maximize the daily amount of IDG accommodation under the uncertainties of IDG and load. Various active management techniques such as IDG curtailment, on-load tap changer (OLTC) tap adjusting, voltage regulator (VR) tap adjusting, shunt capacitors compensation and so on are fully considered. Genetic algorithm and Primal-Dual Interior Point Method (PDIPM) is used for the model solving. Point estimate method is used to simulate the uncertainties. Different scenarios are selected for the IDG accommodation capability investigation under different active management schemes. Finally a modified IEEE 123 case is used to testify the proposed accommodation model, the results show that the active management can largely increase the IDG accommodation and penetration.