• 제목/요약/키워드: Optimal Clustering

검색결과 367건 처리시간 0.023초

영구자석 동기전동기의 고성능 구동을 위한 적응 퍼지 속도 제어기 (Adaptive Speed Controller for high performance PMSM drive)

  • 권정진;한우용;이창구;김성중;김배선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1188-1190
    • /
    • 2001
  • This paper presents a clustering adaptive controller to achieve robustness against parameter variations although it has simple structure and computational simplicity. The presented controller based on optimal fuzzy logic controller has an self-tuning characteristics with clustering. The controller requires no model of the system to be controlled. Simulation results show that the usefulness of the proposed controller.

  • PDF

Dynamic Clustering for Load-Balancing Routing In Wireless Mesh Network

  • Thai, Pham Ngoc;Hwang, Min-Tae;Hwang, Won-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제10권12호
    • /
    • pp.1645-1654
    • /
    • 2007
  • In this paper, we study the problem of load balancing routing in clustered-based wireless mesh network in order to enhance the overall network throughput. We first address the problems of cluster allocation in wireless mesh network to achieve load-balancing state. Due to the complexity of the problem, we proposed a simplified algorithm using gradient load-balancing model. This method searches for a localized optimal solution of cluster allocation instead of solving the optimal solution for overall network. To support for load-balancing algorithm and reduce complexity of topology control, we also introduce limited broadcasting between two clusters. This mechanism maintain shortest path between two nodes in adjacent clusters while minimizing the topology broadcasting complexity. The simulation experiments demonstrate that our proposed model achieve performance improvement in terms of network throughput in comparison with other clustering methods.

  • PDF

Optimal Fuzzy Models with the Aid of SAHN-based Algorithm

  • Lee Jong-Seok;Jang Kyung-Won;Ahn Tae-Chon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.138-143
    • /
    • 2006
  • In this paper, we have presented a Sequential Agglomerative Hierarchical Nested (SAHN) algorithm-based data clustering method in fuzzy inference system to achieve optimal performance of fuzzy model. SAHN-based algorithm is used to give possible range of number of clusters with cluster centers for the system identification. The axes of membership functions of this fuzzy model are optimized by using cluster centers obtained from clustering method and the consequence parameters of the fuzzy model are identified by standard least square method. Finally, in this paper, we have observed our model's output performance using the Box and Jenkins's gas furnace data and Sugeno's non-linear process data.

일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델 (A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance)

  • 황흥석
    • 산업공학
    • /
    • 제11권1호
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

Practical Data Transmission in Cluster-Based Sensor Networks

  • Kim, Dae-Young;Cho, Jin-Sung;Jeong, Byeong-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.224-242
    • /
    • 2010
  • Data routing in wireless sensor networks must be energy-efficient because tiny sensor nodes have limited power. A cluster-based hierarchical routing is known to be more efficient than a flat routing because only cluster-heads communicate with a sink node. Existing hierarchical routings, however, assume unrealistically large radio transmission ranges for sensor nodes so they cannot be employed in real environments. In this paper, by considering the practical transmission ranges of the sensor nodes, we propose a clustering and routing method for hierarchical sensor networks: First, we provide the optimal ratio of cluster-heads for the clustering. Second, we propose a d-hop clustering scheme. It expands the range of clusters to d-hops calculated by the ratio of cluster-heads. Third, we present an intra-cluster routing in which sensor nodes reach their cluster-heads within d-hops. Finally, an inter-clustering routing is presented to route data from cluster-heads to a sink node using multiple hops because cluster-heads cannot communicate with a sink node directly. The efficiency of the proposed clustering and routing method is validated through extensive simulations.

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

시간단위 전력사용량 시계열 패턴의 군집 및 분류분석 (Clustering and classification to characterize daily electricity demand)

  • 박다인;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.395-406
    • /
    • 2017
  • 전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.

수소 충전소 최적 위치 선정을 위한 기계 학습 기반 방법론 (A Machine Learning based Methodology for Selecting Optimal Location of Hydrogen Refueling Stations)

  • 김수환;류준형
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.573-580
    • /
    • 2020
  • 최근 석유를 대체할 수송 에너지원으로 수소에 대한 관심이 커지고 있다. 수소의 장점을 극대화하기 위해서는 수소 충전소가 많이 보급되어야 한다. 본 논문은 수소 충전소를 보다 가깝게 이용 할 수 있는 최적 위치 선정 방법론을 제안하였다. 기존 에너지의 공급처인 주유소와 천연가스 충전소의 위치를 우선 참고하고, 인구, 등록 차량 수 등의 데이터를 추가 반영하여 수소자동차의 예상 충전 수요를 계산하였다. 기계 학습(machine learning) 기법 중 하나인 k-중심자 군집화(k-medoids Clustering)를 이용하여 예상 수요에 대응하는 최적 수소 충전소 위치를 계산하였다. 제안된 방법의 우수성은 서울의 사례를 통해 수치적으로 설명하였다. 본 방법론과 같은 데이터 기반 방법은 향후 수소의 보급 속도를 높여 환경친화적인 경제 체계를 구축하는데 기여할 수 있을 것이다.

해양사고 신속대응을 위한 k-평균 군집화 기반 경비함정 최적배치 (Optimal Arrangement of Patrol Ships based on k-Means Clustering for Quick Response of Marine Accidents)

  • 유상록;정초영
    • 해양환경안전학회지
    • /
    • 제23권7호
    • /
    • pp.775-782
    • /
    • 2017
  • 현 경비 함정의 위치는 해양사고 위치와의 접근성이 떨어져 있어 합리적이고 과학적인 기준이 아닌 주관적인 판단으로 배치되어 있다. 이에 본 연구에서는 과거 해양사고 데이터를 기반으로 정량적으로 최적의 경비 함정 배치 위치를 도출하고자 한다. 연구 해역은 포항 연안을 대상으로 하였다. 본 연구에서는 k-평균 군집화 알고리즘으로 경비 함정의 배치 위치를 도출한 후, 보로노이 다이어그램으로 각 경비 함정 간 경비 구역을 구획하였다. 연구 결과, 해양사고 1건당 경비 함정의 평균 항해 거리는 4.4해리, 평균 도착 시간은 13.2분이 개선될 수 있었다. 경비 함정을 유동적으로 배치 수를 달리해야 할 경우 본 연구에서 적용한 기법을 활용하여 최적 배치가 가능하며, 신속한 구조 지원 체계가 더욱 확보될 것으로 판단된다.

유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계 (The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index)

  • 오성권;윤기찬;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF