• Title/Summary/Keyword: Optimal Burying Hole Interval

Search Result 1, Processing Time 0.015 seconds

Stability Analysis of Piezoelectric Module and Determine of Optimal Burying Location (압전발전 모듈의 안정성 해석 및 최적 매립위치 결정)

  • In-Soo Son;Ji-Won Kim;Hong-Hoi Joo;Dae-Hwan Cho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.193-199
    • /
    • 2023
  • In this study, an analysis was conducted to analyze the structural stability of the piezoelectric power generation module and to determine the optimal burying hole interval for concrete, the installation site of the power generation module. A piezoelectric element refers to a functional ceramic having a piezoelectric direct effect that converts mechanical energy into electrical energy and a piezoelectric reverse effect. In the analysis of the piezoelectric power generation module, the load condition was applied with about 16 tons and a total of 10 wheels in consideration of the container trailer. The purpose was to evaluate the stability of major components of the piezoelectric power generation module through finite element analysis. In order to determine the optimal burying location of the concrete ground for burying the piezoelectric power generation module, the stability of the ground structure according to the distance of the holes was determined. As a result of the analysis, the maximum stress of the piezoelectric power generation module was generated in the support spring, showing a stress of about 276.7 MPa. It was found that the spacing of holes for embedding the piezoelectric power generation module should be set to a minimum of 100 mm or more.