• Title/Summary/Keyword: Optimal Algorithm

Search Result 6,866, Processing Time 0.041 seconds

Applications to Recommend Moving Route by Schedule Using the Route Search System of Map API (지도 API의 경로 탐색 시스템을 활용한 일정 별 동선 추천 애플리케이션)

  • Ji-Woo Kim;Jung-Yi Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • The purpose of this study is to research and develop so that users who are gradually progressing in the popularization of smartphones and the calculation of agricultural quality can use more active and flexible applications than existing application fields. People use event management applications to remember what they need to do, and maps applications to get to their appointments on time. You will need to build a glue-delivered application that leverages the Maps API to be able to recommend the glove's path for events so that the user can use the application temporarily. By comparing and analyzing currently used calendar, map, and schedule applications, several Open Maps APIs were compared to supplement the weaknesses and develop applications that converge the strengths. The results of application development by applying the optimal algorithm for recommending traffic routes according to time and place for the schedule registered by the user are described.

Projecting the spatial-temporal trends of extreme climatology in South Korea based on optimal multi-model ensemble members

  • Mirza Junaid Ahmad;Kyung-sook Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.314-314
    • /
    • 2023
  • Extreme climate events can have a large impact on human life by hampering social, environmental, and economic development. Global circulation models (GCMs) are the widely used numerical models to understand the anticipated future climate change. However, different GCMs can project different future climates due to structural differences, varying initial boundary conditions and assumptions about the physical phenomena. The multi-model ensemble (MME) approach can improve the uncertainties associated with the different GCM outcomes. In this study, a comprehensive rating metric was used to select the best-performing GCMs out of 11 CMIP5 and 13 CMIP6 GCMs, according to their skills in terms of four temporal and five spatial performance indices, in replicating the 21 extreme climate indices during the baseline (1975-2017) in South Korea. The MME data were derived by averaging the simulations from all selected GCMs and three top-ranked GCMs. The random forest (RF) algorithm was also used to derive the MME data from the three top-ranked GCMs. The RF-derived MME data of the three top-ranked GCMs showed the highest performance in simulating the baseline extreme climate which was subsequently used to project the future extreme climate indices under both the representative concentration pathway (RCP) and the socioeconomic concentration pathway scenarios (SSP). The extreme cold and warming indices had declining and increasing trends, respectively, and most extreme precipitation indices had increasing trends over the period 2031-2100. Compared to all scenarios, RCP8.5 showed drastic changes in future extreme climate indices. The coasts in the east, south and west had stronger warming than the rest of the country, while mountain areas in the north experienced more extreme cold. While extreme cold climatology gradually declined from north to south, extreme warming climatology continuously grew from coastal to inland and northern mountainous regions. The results showed that the socially, environmentally and agriculturally important regions of South Korea were at increased risk of facing the detrimental impacts of extreme climatology.

  • PDF

Study on Optimal Location of Water Quality Measurement Sensor Based on Travel Time (도달시간 기반 상수관망 수질계측기 최적위치 선정에 관한 연구)

  • Eun Hwan Lee;Jeong A Wang;Song I Lee;Hwan Don Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.497-497
    • /
    • 2023
  • 정수장에서 소독 및 여과 처리가 완료된 깨끗한 물은 배급수시설로 전달되나, 실제로 관의 노후화, 갑작스러운 유향 변동, 특정 구역의 관 내 정체 시간에 따른 Water Age 상승 등 여러 요인으로 인해 실제 수용가에는 안전하지 않은 용수가 공급될 가능성이 있으며, 이에 따라 적절한 위치에서 지속적인 감시를 통한 조기 발견 및 조치가 필요하다. 상수도 시설기준(2010)에 배수시설의 주요 지점 혹은 관 말단 등 필요에 따라 적절한 위치에 수질 계측기를 설치할 수 있도록 제시되어 있으나, 계측기 설치 위치나 개수에 대한 기준이 모호한 실정이다. 모든 구역에 수질계측기를 설치하여 감시하는 것이 이상적이지만, 현실적으로는 지자체 환경 및 경제적인 한계가 있어 주요 위치에 설치하는 것이 바람직하다. 본 연구에서는 대표적인 수리해석 모형인 EPANET을 사용하여 대상 관망의 노후도, 유속, 유향변동 등의 영향인자를 바탕으로 수질사고가 발생할 확률이 높은 관을 위험관으로 선정하고, 선정된 위험관을 대상으로 최단 경로와 Cost를 산출할 수 있는 Floyd Warshall Algorithm을 이용하여 각 Node(수용가)간 물이 이동할 때의 최소 도달시간과 경로를 파악하였다. 또한, 시간 서비스 수준(Level of T hour Serivice)의 개념을 도입하여 위험관으로부터 특정시간 이내에 흐름이 도달하는 Node를 파악한 뒤, 그 중 가장 많은 피해를 발생시킬 수 있는 위험관을 수질계측위치 지점으로 선정하였다. 제시된 수질사고 발생위험이 높은 위험관을 대상으로 수질계측 위치를 선정하는 방법이 전체 관망 네트워크를 대상으로 수질계측 위치를 판단하는 방법보다 결과 신뢰도 측면에서 더욱 효과적이고 효율적인 방법으로 사료된다.

  • PDF

HSE Block : Automatic Optimization of the Number of Convolutional Layer Filters using SE Block (HSE Block : SE Block을 활용한 합성곱 신경망 필터 수 자동 최적화)

  • Tae-Wook Kim;Hyeon-Jin Jung;Ellen J. Hong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.179-184
    • /
    • 2022
  • In this paper, we are going to study how we can automatically determine the number of convolutional filters for the optimal model without a search algorithm. This paper proposes HSE Block by connecting SE Block proposed in SENet to a convolutional neural network and connecting a convolutional neural network not learned at the bottom. An experiment was conducted to increase the number of filters by one per 3 epoch using two datasets for the HSEBlock model and to increase the number of filters by the value in the filter. Based on this experiment, the model was constructed with multi-layer HSE Block instead of layer HSE Block, and the experiment was carried out using a dataset that was more difficult to learn than the one used in the previous experiment. The effect of HSE Block was verified by conducting an experiment with the number of HSE Blocks set to 2, 3, 4, and 5 on a dataset that is more difficult to learn than before.

Avocado Classification and Shipping Prediction System based on Transfer Learning Model for Rational Pricing (합리적 가격결정을 위한 전이학습모델기반 아보카도 분류 및 출하 예측 시스템)

  • Seong-Un Yu;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.329-335
    • /
    • 2023
  • Avocado, a superfood selected by Time magazine and one of the late ripening fruits, is one of the foods with a big difference between local prices and domestic distribution prices. If this sorting process of avocados is automated, it will be possible to lower prices by reducing labor costs in various fields. In this paper, we aim to create an optimal classification model by creating an avocado dataset through crawling and using a number of deep learning-based transfer learning models. Experiments were conducted by directly substituting a deep learning-based transfer learning model from a dataset separated from the produced dataset and fine-tuning the hyperparameters of the model. When an avocado image is input, the model classifies the ripeness of the avocado with an accuracy of over 99%, and proposes a dataset and algorithm that can reduce manpower and increase accuracy in avocado production and distribution households.

Short-Term Water Quality Prediction of the Paldang Reservoir Using Recurrent Neural Network Models (순환신경망 모델을 활용한 팔당호의 단기 수질 예측)

  • Jiwoo Han;Yong-Chul Cho;Soyoung Lee;Sanghun Kim;Taegu Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.46-60
    • /
    • 2023
  • Climate change causes fluctuations in water quality in the aquatic environment, which can cause changes in water circulation patterns and severe adverse effects on aquatic ecosystems in the future. Therefore, research is needed to predict and respond to water quality changes caused by climate change in advance. In this study, we tried to predict the dissolved oxygen (DO), chlorophyll-a, and turbidity of the Paldang reservoir for about two weeks using long short-term memory (LSTM) and gated recurrent units (GRU), which are deep learning algorithms based on recurrent neural networks. The model was built based on real-time water quality data and meteorological data. The observation period was set from July to September in the summer of 2021 (Period 1) and from March to May in the spring of 2022 (Period 2). We tried to select an algorithm with optimal predictive power for each water quality parameter. In addition, to improve the predictive power of the model, an important variable extraction technique using random forest was used to select only the important variables as input variables. In both Periods 1 and 2, the predictive power after extracting important variables was further improved. Except for DO in Period 2, GRU was selected as the best model in all water quality parameters. This methodology can be useful for preventive water quality management by identifying the variability of water quality in advance and predicting water quality in a short period.

DNN based Binary Classification Model by Particular Matter Concentration (DNN 기반의 미세먼지 농도별 이진 분류 모델)

  • Lee, Jong-sung;Jung, Yong-jin;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.277-279
    • /
    • 2021
  • There is a problem that learning of a prediction model is not well performed depending on the characteristics of each particular matter concentration. To solve this problem, it is necessary to design a prediction model for low concentration and high concentration separately. Therefore, a classification model is needed to classify the concentration of particular matter into low and high concentrations. This paper proposes a classification model to classify low and high concentrations based on the concentration of particular matter. DNN was used as the classification model algorithm, and the classification model was designed by applying the optimal parameters after searching for hyper parameters. As for the result of evaluating the performance of the model, 97.54% of the low concentration classification was measured. And in the case of high concentration classification, 85.51% was measured.

  • PDF

Reinforcement Learning for Minimizing Tardiness and Set-Up Change in Parallel Machine Scheduling Problems for Profile Shops in Shipyard (조선소 병렬 기계 공정에서의 납기 지연 및 셋업 변경 최소화를 위한 강화학습 기반의 생산라인 투입순서 결정)

  • So-Hyun Nam;Young-In Cho;Jong Hun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.202-211
    • /
    • 2023
  • The profile shops in shipyards produce section steels required for block production of ships. Due to the limitations of shipyard's production capacity, a considerable amount of work is already outsourced. In addition, the need to improve the productivity of the profile shops is growing because the production volume is expected to increase due to the recent boom in the shipbuilding industry. In this study, a scheduling optimization was conducted for a parallel welding line of the profile process, with the aim of minimizing tardiness and the number of set-up changes as objective functions to achieve productivity improvements. In particular, this study applied a dynamic scheduling method to determine the job sequence considering variability of processing time. A Markov decision process model was proposed for the job sequence problem, considering the trade-off relationship between two objective functions. Deep reinforcement learning was also used to learn the optimal scheduling policy. The developed algorithm was evaluated by comparing its performance with priority rules (SSPT, ATCS, MDD, COVERT rule) in test scenarios constructed by the sampling data. As a result, the proposed scheduling algorithms outperformed than the priority rules in terms of set-up ratio, tardiness, and makespan.

Machine Learning-based Data Analysis for Designing High-strength Nb-based Superalloys (고강도 Nb기 초내열 합금 설계를 위한 기계학습 기반 데이터 분석)

  • Eunho Ma;Suwon Park;Hyunjoo Choi;Byoungchul Hwang;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2023
  • Machine learning-based data analysis approaches have been employed to overcome the limitations in accurately analyzing data and to predict the results of the design of Nb-based superalloys. In this study, a database containing the composition of the alloying elements and their room-temperature tensile strengths was prepared based on a previous study. After computing the correlation between the tensile strength at room temperature and the composition, a material science analysis was conducted on the elements with high correlation coefficients. These alloying elements were found to have a significant effect on the variation in the tensile strength of Nb-based alloys at room temperature. Through this process, a model was derived to predict the properties using four machine learning algorithms. The Bayesian ridge regression algorithm proved to be the optimal model when Y, Sc, W, Cr, Mo, Sn, and Ti were used as input features. This study demonstrates the successful application of machine learning techniques to effectively analyze data and predict outcomes, thereby providing valuable insights into the design of Nb-based superalloys.

Grid Strut-Tie Model Approach for Structural Concrete Design (콘크리트 구조부재의 설계를 위한 격자 스트럿-타이 모델 방법)

  • Yun, Young Mook;Kim, Byung Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.621-637
    • /
    • 2006
  • Although the approaches implementing strut-tie models are the valuable tools for designing discontinuity regions of structural concrete, the approaches of the current design codes have to be improved for the design of structural concrete subjected to complex loading and geometrical conditions because of the uncertainties in the selection of strut-tie model, in the use of an indeterminate strut-tie model, and in the effective strengths of struts and nodal zones. To improve the uncertainties, a grid struttie model approach is proposed in this study. The proposed approach, allowing to perform a consistent and effective design of structural concrete, employs an initial grid strut-tie model in which various load combinations can be considered. In addition, the approach performs an automatic selection of an optimal strut-tie model by evaluating the capacities of struts and ties using a simple optimization algorithm. The validity and effectiveness of the proposed approach is verified by conducting the analysis of the four reinforced concrete deep beams tested to failure and the design of shearwalls with two openings.