• Title/Summary/Keyword: Optics design

Search Result 882, Processing Time 0.02 seconds

A Study on Methods for the Visualization of Stage Space through Stage Lighting (무대조명을 통한 무용 예술의 무대공간 시각화 방안 연구)

  • Lee, Jang-Weon;Yi, Chin-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.16-28
    • /
    • 2009
  • Stage art basically builds upon the essence of "seeing," and at the same time, possesses relativity in showing and seeing. Stage lighting uses artificial light to solve the essence of "seeing", which is the foundation of stage art, and coming into the modern age, its role has been enhanced to an important medium for visual expression in stage art, due to the lighting tools that developed at a rapid pace along with the discovery of electricity, as well as the development of optics. Therefore, not only does lighting use a medium known as light in a field of stage art that gives mental and emotional inspiration to the audience, and aesthetically expresses time and space. In other words, stage lighting is a complex function of light engineering (technology and science) and aesthetic sense (feeling and art). This study aims to do research on methods for the visualization of stage space through lighting, mainly focused on dancing. I have studied the basics of stage lighting, its relations with other fields of stage art, and the functions and characteristics of lighting. Results show that lighting could be used to maximize the visualization of dancing and emphasizing the artistic growth of lighting and its ability to aesthetically express and I came to the following conclusions. First, lighting uses the forms and directions of light that various tools are able to produce in order to visualize the space on stage, and can maximally express the image that the work seeks. Second, it is possible to use lighting, through the movement of light, as a visual representation of the configuration of space in dancing works. Third, through the expression of visual and spatial aspects created by light, the work's dramatic catharsis can bring out mental and emotional feelings form the audience. Fourth, lighting can be seen not as a supporting role, but as an original visual design. To conclude, in order for lighting to be freed form the simple function of "lighting up the stage," which a majority of people think is common knowledge, and grow as one area in art, lighting designers must understand the intentions of the choreographer and the work with creativity and artistry they must consider light and color as an aesthetic language in order to heighten the effects of the work and allow it to partake as one element of work creation, so that lighting will be treated as a form of art.

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).