• Title/Summary/Keyword: Optical trapping

Search Result 87, Processing Time 0.209 seconds

Enhanced Photo Current in n-ZnO/p-Si Diode Via Embedded Ag Nanoparticles for the Solar Cell Application

  • Ko, Young-Uk;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Seong-Hyeon;Kim, Jin-Sup;An, Jin-Un;Eom, Ki-Yun;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권1호
    • /
    • pp.35-40
    • /
    • 2015
  • In this study, an n-ZnO/p-Si heterojunction diode with embedded Ag nanoparticles was fabricated to investigate the possible improvement of light trapping via the surface plasmon resonance effect for solar cell applications. The Ag nanoparticles were fabricated by the physical sputtering method. The acquired current-voltage curves and optical absorption spectra demonstrated that the application of Ag nanoparticles in the n-ZnO/p-Si interface increased the photo current, particularly in specific wavelength regions. The results indicate that the enhancement of the photo current was caused by the surface plasmon resonance effect generated by the Ag nanoparticles. In addition, minority carrier lifetime measurements showed that the recombination losses caused by the Ag nanoparticles were negligible. These results suggest that the embedding of Ag nanoparticles is a powerful method to improve the performance of n-ZnO/p-Si heterojunction solar cells.

라덱스의 물성이 도공지 품질에 미치는 상관성에 대한 연구 (Studies on the Correlation between Coated Paper and Physical Properties of Latices)

  • 박동국;조교동;고문찬;윤재한;이용규
    • 펄프종이기술
    • /
    • 제34권1호
    • /
    • pp.22-29
    • /
    • 2002
  • The coated paper was greatly affected by the basic physical properties of the binder as well as the amount of the coating formula. High glass transition temperature (Tg) of the styrene-butadiene (SB) latex, selected as the binder in our study, gave the high stiffness to the coated paper, but lowered the binding force and print gloss. The average particle size of the SB latex also greatly affected to the coated paper so that the smaller particle size improved the rheological property of the coating formula and increased the binding force and print gloss. Another property of the SBR latex, gel content, was important because when its value was small, the latex was easily deformed at the high temperature and increased air permeability to the coated paper. Therefore, the lower gel content consequently resulted in the higher blistering resistance, especially in the web paper. The larger portion of the SB latex in the coated formula improved the binding force and print gloss, but decreased the ink set-off and ink-trapping to the coated paper. The heavier coating improved optical properties such as opacity, paper gloss and paper smoothness, to the coated paper.

도판트 농도가 단일 발광층 인광 백색 OLED의 전기 및 광학적 특성에 미치는 영향 (Effects of Dopant Concentration on the Electrical and Optical Properties of Phosphorescent White Organic Light-emitting Diodes with Single Emission Layer)

  • 도재면;문대규
    • 한국전기전자재료학회논문지
    • /
    • 제27권4호
    • /
    • pp.232-237
    • /
    • 2014
  • We have fabricated white organic light-emitting diodes (OLEDs) by co-doping of red and blue phosphorescent guest emitters into the single host layer. Tris(2-phenyl-1-quinoline) iridium(III) [$Ir(phq)_3$] and iridium(III)bis[(4,6-di-fluorophenyl)-pyridinato-$N,C^{2^{\prime}}$]picolinate (FIrpic) were used as red and blue dopants, respectively. The effects of dopant concentration on the emission, carrier conduction and external quantum efficiency characteristics of the devices were investigated. The emissions on the guest emitters were attributed to the energy transfer to the guest emitters and direct excitation by trapping of the carriers on the guest molecules. The white OLED with 5% FIrpic and 2% $Ir(phq)_3$ exhibited a maximum external quantum efficiency of 19.9% and a maximum current efficiency of 45.2 cd/A.

SF6/O2 혼합가스에 의한 실리콘 웨이퍼의 표면 텍스쳐링 특성 (Characterization of Surface Textured Silicon Substrates by SF6/O2 Gas Mixture)

  • 강민석;주성재;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.345-348
    • /
    • 2012
  • The optical losses associated with the reflectance of incident radiation are among the most important factors limiting the efficiency of a solar cell. Therefore, photovoltaic cells normally require special surface structures or materials, which can reduce reflectance. In this study, nano-scale textured structures with anti-reflection properties were successfully formed on silicon. The surface of sicon wafer was etched by the inductively coupled plasma process using the gaseous mixture of $SF_6+O_2$. We demonstrate that the reflection characteristic has significantly reduced by ~0% compared with the flat surface. As a result, the power efficiency $P_{max}$ of the nano-scale textured silicon solar cell were enhanced up to 20%, which can be ascribed primarily to the improved light trapping in the proposed nano-scale texturing.

Temperature dependences of the band-gap energy and the PC intensity for $CuInSe_2$ thin films

  • You, Sang-Ha;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.139-140
    • /
    • 2008
  • In this study, the photocurrent (PC) spectroscopy of undoped p-type CIS layers has been investigated at temperatures ranging from 10 to 293 K. Three peaks, A, B, and C, corresponded to the intrinsic transition from the valence band states off $\Gamma_7$(A), $\Gamma_6$(B), and $\Gamma_7$(C) to the conduction band state $\Gamma_6$, respectively. The crystal field splitting and the spin orbit splitting were found at 0.0059 and 0.2301 eV, respectively, and the temperature dependence of the optical band gap could be expressed by using the empirical equation $E_g$(T) = $E_g$(0) - $(8.57\times10^{-4)T^2$/(T + 129). But the behavior of the PC was different from that generally observed in other semiconductors: the PC intensities decreased with decreasing temperature. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, the dominant level was observed at the higher temperatures. We suggest that in undoped p-type CIS layers, the trapping center limits the PC signal due to native defects and impurities with decreasing temperature.

  • PDF

친환경 원가절감형 바이오바인더를 이용한 다층 도공지 제조 (제3보) - 친환경 원가 절감형 바이오바인더의 공장 적용 실험 - (Manufacturing of Multi-layer Coated Paper with Eco-friendly Biobinder for Cost Saving (3) - Mill Trial of Eco-friendly Biobinder for Cost Saving -)

  • 이용규;안국헌;김창수;원종명
    • 펄프종이기술
    • /
    • 제47권5호
    • /
    • pp.127-133
    • /
    • 2015
  • Recent worldwide trends are to develop the environmental friendly chemicals and processes in order to reduce the global warming and climate change phenomena. One of similar efforts in paper industry is to substitute the petroleum-based SBR latex by starch-based biobinder. The disadvantage of biobinder found through laboratory scale study was the lower dry pick strength than SBR latex. The objective of this study is to confirm the substitutability of SBR latex with biobinder through mill trial. Although biobinder itself gave lower dry pick strength, it was found that the use of SBR latex and biobinder mixture (50:50) could improve the dry pick strength. The introduction of biobinder into coating binder system improved the opacity of coated paper. Optical properties (brightness and whiteness), ink trapping, print gloss and mottling level of paper coated with biobinder system were similar to those of SBR latex.

EFFECT OF CIGARETTE PAPER ON CIGARETTEAPPEARANCE BURN RATE AND SIDESTREAM SMOKE

  • Jr Vladimir Hampl
    • 한국연초학회:학술대회논문집
    • /
    • 한국연초학회 2000년도 24회 정기총회 및 43회 학술발표회
    • /
    • pp.12-21
    • /
    • 2000
  • The smoke from a burning cigarette is classified as mainstream, which is the smoke inhaled by the smoker during a puff, and sidestream, which is defined by ISO 10185 as all smoke which leaves a cigarette during the smoking process other than from the butt end. Most of the sidestream smoke is generated during static burn, that is, in between puffs. The amount of sidestream smoke generated by a cigarette depends on the cigarette construction, tobacco blend, and properties of the cigarette paper, The main paper properties affecting sidestream smoke generation are: porosity, basis weight, type and amount of filler, type and amount of burn additive.Sidestream smoke is composed of a visible phase (small liquid droplets) and an invisible phase (gaseous molecules). This paper focuses on the visible portion of the sidestream smoke. Optical methods, which are based on the relationship between light scattering and density of the rising plume of smoke, have been used successfully by the industry. However, the present trend is to use gravimetric methods where the particulate matter is captured on a Cambridge(R) filter pad and weighed. The gaseous portion of the sidestream smoke, which does not contribute to the visible sidestream smoke, passes through the Cambridge filter pad.Sidestream smoke reduction is achieved by modifying certain mass transport processes occurring in a smoldering cigarette. There are four main pathways for reducing sidestream smoke: A) less tobacco burned, B) slower rate of tobacco combustion, C) more efficient trapping of smoke by the cigarette paper, and D) more complete combustion of tobacco. This paper discusses how the physical properties of paper and cigarette construction affect sidestream smoke reduction via the above four mechanisms.

  • PDF

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo;Deok-Young Lee;Sin Hyuk Yim;Hyun-Gue Hong;Sun Do Lim;Seung Kwan Kim;Young-Pyo Hong;No-Weon Kang;In-Ho Bae
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.207-212
    • /
    • 2023
  • In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

Fabrication of Microwire Arrays for Enhanced Light Trapping Efficiency Using Deep Reactive Ion Etching

  • 황인찬;서관용
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.454-454
    • /
    • 2014
  • Silicon microwire array is one of the promising platforms as a means for developing highly efficient solar cells thanks to the enhanced light trapping efficiency. Among the various fabrication methods of microstructures, deep reactive ion etching (DRIE) process has been extensively used in fabrication of high aspect ratio microwire arrays. In this presentation, we show precisely controlled Si microwire arrays by tuning the DRIE process conditions. A periodic microdisk arrays were patterned on 4-inch Si wafer (p-type, $1{\sim}10{\Omega}cm$) using photolithography. After developing the pattern, 150-nm-thick Al was deposited and lifted-off to leave Al microdisk arrays on the starting Si wafer. Periodic Al microdisk arrays (diameter of $2{\mu}m$ and periodic distance of $2{\mu}m$) were used as an etch mask. A DRIE process (Tegal 200) is used for anisotropic deep silicon etching at room temperature. During the process, $SF_6$ and $C_4F_8$ gases were used for the etching and surface passivation, respectively. The length and shape of microwire arrays were controlled by etching time and $SF_6/C_4F_8$ ratio. By adjusting $SF_6/C_4F_8$ gas ratio, the shape of Si microwire can be controlled, resulting in the formation of tapered or vertical microwires. After DRIE process, the residual polymer and etching damage on the surface of the microwires were removed using piranha solution ($H_2SO_4:H_2O_2=4:1$) followed by thermal oxidation ($900^{\circ}C$, 40 min). The oxide layer formed through the thermal oxidation was etched by diluted hydrofluoric acid (1 wt% HF). The surface morphology of a Si microwire arrays was characterized by field-emission scanning electron microscopy (FE-SEM, Hitachi S-4800). Optical reflection measurements were performed over 300~1100 nm wavelengths using a UV-Vis/NIR spectrophotometer (Cary 5000, Agilent) in which a 60 mm integrating sphere (Labsphere) is equipped to account for total light (diffuse and specular) reflected from the samples. The total reflection by the microwire arrays sample was reduced from 20 % to 10 % of the incident light over the visible region when the length of the microwire was increased from $10{\mu}m$ to $30{\mu}m$.

  • PDF

Photofield-Effect in Amorphous In-Ga-Zn-O (a-IGZO) Thin-Film Transistors

  • Fung, Tze-Ching;Chuang, Chiao-Shun;Nomura, Kenji;Shieh, Han-Ping David;Hosono, Hideo;Kanicki, Jerzy
    • Journal of Information Display
    • /
    • 제9권4호
    • /
    • pp.21-29
    • /
    • 2008
  • We studied both the wavelength and intensity dependent photo-responses (photofield-effect) in amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs). During the a-IGZO TFT illumination with the wavelength range from $460\sim660$ nm (visible range), the off-state drain current $(I_{DS_off})$ only slightly increased while a large increase was observed for the wavelength below 400 nm. The observed results are consistent with the optical gap of $\sim$3.05eV extracted from the absorption measurement. The a-IGZO TFT properties under monochromatic illumination ($\lambda$=420nm) with different intensity was also investigated and $I_{DS_off}$ was found to increase with the light intensity. Throughout the study, the field-effect mobility $(\mu_{eff})$ is almost unchanged. But due to photo-generated charge trapping, a negative threshold voltage $(V_{th})$ shift is observed. The mathematical analysis of the photofield-effect suggests that a highly efficient UV photocurrent conversion process in TFT off-region takes place. Finally, a-IGZO mid-gap density-of-states (DOS) was extracted and is more than an order of magnitude lower than reported value for hydrogenated amorphous silicon (a-Si:H), which can explain a good switching properties observed for a-IGZO TFTs.