• 제목/요약/키워드: Optical thickness distribution

검색결과 90건 처리시간 0.034초

고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지 (Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques)

  • 현창욱;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1215-1227
    • /
    • 2018
  • 해빙의 이동은 지역적 분포뿐만 아니라 해빙의 생성 및 두께에도 영향을 미치기 때문에 해빙의 변화를 평가하는 데에 중요한 정보가 된다. 이 연구에서는 북극해 해빙의 이동 특성 탐지를 위해 Korea Multi-Purpose Satellite-2(KOMPSAT-2)와 Korea Multi-Purpose Satellite-3(KOMPSAT-3)의 두 위성 센서로부터 다중 시기 고해상도 광학 위성 영상을 획득하고, SIFT(Scale-Invariant Feature Transform), SURF(Speeded Up Robust Features) 및 ORB(Oriented FAST and Rotated BRIEF)의 특징점 추적 기법을 적용하였다. 두 위성 센서에서 획득된 영상의 활용을 위해 전처리 단계에서 공간해상도와 방사해상도를 일치시킨 후 특징점 추적 기법을 적용한 결과 SIFT의 경우 영상 전반에 걸쳐 특징점의 고른 공간 분포가 나타났고, SURF의 경우 해빙과 해양의 경계 부분에 특징점이 주요하게 분포하는 경향이 관찰되었으며 이러한 경향은 ORB에서 가장 현저하게 나타났다. 특징점 추적 기법별 연산 시간 측정 결과 SIFT, SURF 및 ORB의 순서로 연산 시간이 감소하였다. ORB의 경우 SIFT 기법 대비 추적된 특징점 수가 평균 59.8%로 줄어들었지만 연산 시간은 평균 8.7%에 해당하는 시간이 소요되어 해빙 이동 특성의 고속 탐지에 적합한 기법으로 판단된다.

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • 제15권3호
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

사출/압축 성형 Center-Gated 디스크에서의 잔류 응력과 복굴절의 수치 해석 (I) - 모델링 및 기본 결과 - (Numerical Analysis of ]Residual Stresses and Birefringence in Injection/Compression Molded Center-gated Disks (I) - Modeling and Basic Results -)

  • 이영복;권태헌;윤경환
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2342-2354
    • /
    • 2002
  • The present study has numerically predicted both the flow -induced and thermally-induced residual stresses and birefringence in injection o. injection/compression molded center -gated disks. Analysis system for entire molding process was developed based on an ap propriate physical modeling including a nonlinear viscoelastic fluid model, stress-optical law, a linear viscoelastic solid model, free volume theory for density relaxation phenomena and a photoviscoelasticity and so on. Part I presents physical modeling a nd typical numerical analysis results of residual stresses and birefringence in the injection molded center-gated disk. Thermal residual stress was found to be extensional near the center, compressive near the surface and tend to become toward tensional at the surface. A double-hump profile was obtained across the thickness in birefringence distribution: nonzero birefringence is found to be thermally induced, the outer peak is due to the shear flow and subsequent stress relaxation during the filling stage a nd the inner peak is due to the additional shear flow and stress relaxation during the packing stage. Predicted birefringence including both the flow -induced and thermally-induced one becomes quite similar to the experimental one.

열 구동 엑츄에이터와 SU-8을 이용한 마이크로 그리퍼 설계 및 제조 (Design and fabrication of microgripper using thermal actuator and SU-8)

  • 정승호;박준식;이민호;박상일;이인규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1613-1616
    • /
    • 2007
  • A microgripper using thermal actuator and SU-8 polymer was designed and fabricated to manipulate cells and microparts. A chip size of a microgripper was 3 mm ${\times}$ 5 mm. The thermally actuated microgripper consisted of two couples of hot and cold arm actuators. The high thermal expansion coefficient, 52 $ppm/^{\circ}C$, of SU-8 compared to silicon and metals, allows the actuation of the microgripper. Thickness and width of SU-8 as an end-effector were 26 ${\mu}m$ and 80 ${\mu}m$, respectively. Initial gap between left jaw and right jaw was 120 ${\mu}m$. The ANSYS program as FEM tool was introduced to analyze the thermal distribution and displacement induced by thermal actuators. $XeF_2$ gas was used for isotropic silicon dry etching process to release SU-8 end-effector. Mechanical displacements of the fabricated microgripper were measured by optical microscopy in the range of input voltage from 0 V to 2.5 V. The maximum displacement between two jaws of a microgripper Type OG 1_1 was 22.4 ${\mu}m$ at 2.5 V.

  • PDF

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측 (Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis)

  • 이권호
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

WC-Ni-Si-B4C계 초경합금 제조 및 스테인레스 스틸과의 확산접합 (Fabrication of WC-Ni-Si-B4C Composite and Diffusion Bonding with Stainless Steel)

  • 원종운
    • 한국생산제조학회지
    • /
    • 제24권6호
    • /
    • pp.594-598
    • /
    • 2015
  • The effects of Ni on the mechanical properties of WC-Xwt.%Ni-1.5wt.%Si-1.1wt.%$B_4C$ composite (X = 21.6, 23.6, 25.6 and 27.6 wt.%) were investigated in order to replace Co with Ni as the binder metal for hard materials based on WC-Co system. Using X-ray diffraction, optical microscopy, field-emission scanning electron microscopy results, the microstructure, pore distribution and grain size of the composites sintered at $1,150^{\circ}C$ were examined with different fraction (X = 21.6, 23.6, 25.6 and 27.6 wt.%) of binder metal Ni. The average WC grain size of the $WC-Ni-Si-B_4C$ composites was about $1{\mu}m$. The Rockwell hardness : A (HRA) and transverse rupture strength were about 88HRA and $110kgf/mm^2$, respectively. The obtained sample was bonded with SM45C at a temperature of $1,050^{\circ}C$. The thickness and mechanical properties of the bonded area were investigated with different dwell time at a bonding temperature of $1,050^{\circ}C$.

초음속 노즐에서의 약한 수직충격파와 난류경계층의 간섭(제1편, 시간적평균 흐름의 특성) (Weak Normal Shock Wave/Turbulent Boundary Layer Interaction in a Supersonic Nozzle(1st Report, Time-Mean Flow Characteristics))

  • 홍종우
    • 한국산업융합학회 논문집
    • /
    • 제2권2호
    • /
    • pp.115-124
    • /
    • 1999
  • The interaction of weak normal shock wave with turbulent boundary layer in a supersonic nozzle was investigated experimentally by wall static pressure measurements and by schlieren optical observations. The lime-mean flow in the interaction region was classified into four patterns according to the ratio of the pressure $p_k$ at the first kink point in the pressure distribution of the interaction region to the pressure $p_1$ just upstream of the shock. It is shown for any flow pattern that the wall static pressure rise near the shock foot can be described by the "free interaction" which is defined by Chapman et al. The ratio of the triple point height $h_t$ of the bifurcated shock to the undisturbed boundary layer thickness ${\delta}_1$ upstream of the interaction increases with the upstream Mach number $M_1$, and for a fixed $M_1$, the normalized triple point height $h_t/{\delta}_1$ decreases with increasing ${\delta}_1/h$, where h is the duct half-height.

  • PDF

형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II (Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II)

  • 김현정;유재석;박진일
    • 설비공학논문집
    • /
    • 제25권12호
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.