• Title/Summary/Keyword: Optical systems

Search Result 2,357, Processing Time 0.033 seconds

Light Emitting Diode with Multi-step Quantum Well Structure for Sensing Applications (계단형 양자우물 구조가 적용된 센서 광원 용 발광다이오드 소자)

  • Seongmin Park;Seungjoo Lee;Jajeong Woo;Yukyung Kim;Soohwan Jang
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.441-446
    • /
    • 2023
  • Electrical and optical characteristics of the GaN-based light-emitting diode (LED) with the improved multi-quantum well (MQW) structure have been studied for light source in bio-sensing systems. Novel GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN and Al0.1GaN/GaN/In0.2GaN/GaN/Al0.1GaN (MQW) structures were suggested, and their radiative recombination rate, light output power, electroluminescence, and external quantum efficiency were compared with those of the conventional GaN/In0.2GaN/GaN MQW structure using device simulation. The LED with the GaN/In0.1GaN/In0.2GaN/In0.1GaN/GaN MQW structure showed an excellent recombination rate of 5.57 × 1028 cm-3·s-1 that was more than one order improvement over that of the conventional LED. In addition, the efficiency droop was relieved by the suggested stepped MQW structure.

A Study on Building a Scalable Change Detection System Based on QGIS with High-Resolution Satellite Imagery (고해상도 위성영상을 활용한 QGIS 기반 확장 가능한 변화탐지 시스템 구축 방안 연구)

  • Byoung Gil Kim;Chang Jin Ahn;Gayeon Ha
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1763-1770
    • /
    • 2023
  • The availability of high-resolution satellite image time series data has led to an increase in change detection research. Various methods are being studied, such as satellite image pixel and object-level change detection algorithms, as well as algorithms that apply deep learning technology. In this paper, we propose a QGIS plugin-based system to enhance the utilization of these useful results and present an actual implementation case. The proposed system is a system for intensive change detection and monitoring of areas of interest, and we propose a convenient system expansion method for algorithms to be developed in the future. Furthermore, it is expected to contribute to the construction of satellite image utilization systems by presenting the basic structure of commercialization of change detection research.

Differential Interference Contrast Microscopic Module Using a Polarization Grating for Quantitative Phase Imaging (편광 격자 기반 정량적 위상 이미징을 위한 미분 간섭 현미경 모듈 개발)

  • Jin Hee Cho;Ki-Nam Joo
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.6
    • /
    • pp.261-268
    • /
    • 2023
  • We propose a compact differential interference contrast microscopic module, which enables snapshot measurements for quantitative phase imaging. The proposed module adopts the lateral shearing interferometric principle, which can obtain self-interference without a reference. Due to the absence of the reference, the system is more stable than the typical interferometric systems. It uses a polarization grating to generate two laterally shifted wavefronts based on its birefringence and polarizing beam-splitting characteristics. Furthermore, the use of a polarization camera does not require sequential measurements for the phase extraction. In the experiments, we observe and measure the timely varying changes of various specimens to verify the system performance with the bright field images and phase contrast images. Because the proposed microscopic module also has the merit of being adaptable to typical microscopy instead of using an imaging camera, it can conveniently replace conventional contrast microscopy.

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

Dual-stream Co-enhanced Network for Unsupervised Video Object Segmentation

  • Hongliang Zhu;Hui Yin;Yanting Liu;Ning Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.938-958
    • /
    • 2024
  • Unsupervised Video Object Segmentation (UVOS) is a highly challenging problem in computer vision as the annotation of the target object in the testing video is unknown at all. The main difficulty is to effectively handle the complicated and changeable motion state of the target object and the confusion of similar background objects in video sequence. In this paper, we propose a novel deep Dual-stream Co-enhanced Network (DC-Net) for UVOS via bidirectional motion cues refinement and multi-level feature aggregation, which can fully take advantage of motion cues and effectively integrate different level features to produce high-quality segmentation mask. DC-Net is a dual-stream architecture where the two streams are co-enhanced by each other. One is a motion stream with a Motion-cues Refine Module (MRM), which learns from bidirectional optical flow images and produces fine-grained and complete distinctive motion saliency map, and the other is an appearance stream with a Multi-level Feature Aggregation Module (MFAM) and a Context Attention Module (CAM) which are designed to integrate the different level features effectively. Specifically, the motion saliency map obtained by the motion stream is fused with each stage of the decoder in the appearance stream to improve the segmentation, and in turn the segmentation loss in the appearance stream feeds back into the motion stream to enhance the motion refinement. Experimental results on three datasets (Davis2016, VideoSD, SegTrack-v2) demonstrate that DC-Net has achieved comparable results with some state-of-the-art methods.

Effects of Blended TIPS-pentacene:ph-BTBT-10 Organic Semiconductors on the Photoresponse Characteristics of Organic Field-effect Transistors (TIPS-pentacene:ph-BTBT-10 혼합 유기반도체가 유기전계효과트랜지스터 광반응 특성에 미치는 영향)

  • Chae Min Park;Eun Kwang Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • In this study, blended 6,13-Bis(triisopropylsilylethynyl)pentacene (TP):2-Decyl-7-phenyl[1]benzothieno[3,2-b][1] benzothiophene (BT):Poly styrene (PS) TFT at different ratios were explored for their potential application as light absorption sensors. Due to the mixing of BT, both off current reduction and on/off ratio improvement were achieved at the same time. In particular, the TP:BT:PS (1:0.25:1 w/w) sample showed excellent light absorption characteristics, which proved that it is possible to manufacture a high-performance light absorption device. Through analysis of the crystal structure and electrical properties of the various mixing ratios, it was confirmed that the TP:BT:PS (1:0.25:1 w/w) sample was optimal. The results of this study outline the expected effects of this innovation not only for the development of light absorption devices but also for the development of mixed organic semiconductor (OSC) optoelectronic systems. Through this study, the potential to create a multipurpose platform that overcomes the limitations of using a single OSC and the potential to fabricate a high-performance OSC TFT with a fine-tuned optical response were confirmed.

Creative Education Program of Astronomical Instrument Design and Observation: Development of the Small Spectrograph (창의 천문기기 개발 및 관측 교육 프로그램: 소형 분광기 개발)

  • Heesu Yang;Jong-Kyun Chung
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.105-120
    • /
    • 2024
  • The abilities of system engineering and project management (PM) are essential in the development of large instrumentations in modern astronomy. We propose a novel undergraduate educational program that allows students to gain experience in system engineering and PM by making a practical small spectrograph along with its test observation. A pilot program titled "Creative Astronomical Instrument Development and Observation" was conducted in Chungnam National University, as a part of the Space Expert Training Program of Ministry of Science and ICT during the Fall semester of 2023. After five teams were organized from 24 participating students, each team manufactured a spectrograph and observed spectra of the Sun, Moon, or planets with it. The development process was guided by several reviews, and students were evaluated based on the outcomes of their development processes and documentation. Through this program, students acquired fundamental principles of systems engineering and PM, as well as optical and mechanical engineering skills.

Modern Paper Quality Control

  • Olavi Komppa
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.06a
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.

Deep Learning OCR based document processing platform and its application in financial domain (금융 특화 딥러닝 광학문자인식 기반 문서 처리 플랫폼 구축 및 금융권 내 활용)

  • Dongyoung Kim;Doohyung Kim;Myungsung Kwak;Hyunsoo Son;Dongwon Sohn;Mingi Lim;Yeji Shin;Hyeonjung Lee;Chandong Park;Mihyang Kim;Dongwon Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.143-174
    • /
    • 2023
  • With the development of deep learning technologies, Artificial Intelligence powered Optical Character Recognition (AI-OCR) has evolved to read multiple languages from various forms of images accurately. For the financial industry, where a large number of diverse documents are processed through manpower, the potential for using AI-OCR is great. In this study, we present a configuration and a design of an AI-OCR modality for use in the financial industry and discuss the platform construction with application cases. Since the use of financial domain data is prohibited under the Personal Information Protection Act, we developed a deep learning-based data generation approach and used it to train the AI-OCR models. The AI-OCR models are trained for image preprocessing, text recognition, and language processing and are configured as a microservice architected platform to process a broad variety of documents. We have demonstrated the AI-OCR platform by applying it to financial domain tasks of document sorting, document verification, and typing assistance The demonstrations confirm the increasing work efficiency and conveniences.