• Title/Summary/Keyword: Optical system

Search Result 6,965, Processing Time 0.037 seconds

Wear Behaviors of WC-CoCr and WC-CrC-Ni Coatings Sprayed by HVOF (고속화염 용사법으로 제조된 WC-CoCr 코팅과 WC-CrC-Ni 코팅의 내마모 거동)

  • Lee, Seoung Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.204-211
    • /
    • 2020
  • The high-velocity oxy-fuel (HVOF) thermal spraying coating technique has been considered a promising replacement for traditional electrolytic hard chrome plating (EHC), which caused environmental pollution and lung cancer due to toxic Cr6+. In this paper, two types of cermet coatings were prepared by HVOF spraying: WC-CoCr and WC-CrC-Ni coatings. The produced coatings were analyzed extensively in terms of the micro-hardness, porosity, crystalline phase and microstructure using a hardness tester, optical microscopy, X-ray diffraction, and scanning electron microscopy (including energy dispersed spectroscopy (EDS)), respectively. The wear and friction behaviors of the coatings were evaluated comparatively by reciprocating sliding wear tests at 25 ℃, 250 ℃, and 450 ℃. The results revealed correlations among the microstructures, metallic binder matrixes, porosities, and wear performance of the coatings. For example, WC-CoCr coatings showed better sliding wear resistance than WC-CrC-Ni coatings, regardless of the test temperature due to the more homogeneous microstructure, Co-rich, Cr-rich metallic binder matrix, and lower porosity.

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

A Study on Characteristics Analysis of Multichannel Filter Module for Near-infrared Fluorescence Imaging (근적외선 형광 이미징 영상 구현을 위한 다채널 필터 모듈 특성분석 연구)

  • Choi, Jinsoo;Cho, Sang Uk;Kim, Doo-In;Lee, Hak-Guen;Choi, Hak Soo;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.29-34
    • /
    • 2016
  • In this study, development of multichannel filter module and characteristic evaluation for bio imaging were studied. The filter module was fabricated in order to realize near infrared fluorescence imaging of 700 nm and 800 nm wavelength ranges, and contrast imaging analysis for characteristic evaluation of the filter module was studied through signal to back ground ratio (SBR), controlled by parameters such as magnification, exposure, gain. Furthermore, phantoms, which are biomimetic tissue with equal optical properties of kidney and liver, were fabricated to study characteristics of both filter module depending on thickness and exposure amount of light source for bio imaging analysis. The fabricated filter module has more than 4 of SBR difference despite changes of magnification, exposure, gain, and in the case of the kidney phantom and the liver phantom, contrast imaging of more than 4 of SBR was confirmed on 50 mA, 60 mA exposure amount of light source respectively.

Electrical Behavior of the Circuit Screen-printed on Polyimide Substrate with Infrared Radiation Sintering Energy Source (열소결로 제작된 유연기판 인쇄회로의 전기적 거동)

  • Kim, Sang-Woo;Gam, Dong-Gun;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.71-76
    • /
    • 2017
  • The electrical behavior and flexibility of the screen printed Ag circuits were investigated with infrared radiation sintering times and sintering temperatures. Electrical resistivity and radio frequency characteristics were evaluated by using the 4 point probe measurement and the network analyzer by using cascade's probe system, respectively. Electrical resistivity and radio frequency characteristics means that the direct current resistance and signal transmission properties of the printed Ag circuit. Flexibility of the screen printed Ag circuit was evaluated by measuring of electrical behavior during IPC sliding test. Failure mode of the Ag printed circuits was observed by using field emission scanning electron microscope and optical microscope. Electrical resistivity of the Ag circuits screen printed on Pl substrate was rapidly decreased with increasing sintering temperature and durations. The lowest electrical resistivity of Ag printed circuit was up to $3.8{\mu}{\Omega}{\cdot}cm$ at $250^{\circ}C$ for 45 min. The crack length arisen within the printed Ag circuit after $10{\times}10^4$ sliding numbers was 10 times longer than that of after $2.5{\times}10^4$ sliding numbers. Measured insertion loss and calculated insertion loss were in good agreements each other. Insertion loss of the printed Ag circuit was increased with increasing the number of sliding cycle.

Growth and effect of thermal annealing for $AgGaS_2$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $AgGaS_2$ 단결정 박막 성장과 열처리 효과)

  • Moon Jongdae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for AgGaS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, AgGaS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were 590℃ and 440℃, respectively. The temperature dependence of the energy band gap of the AgGaS₂ obtained from the absorption spectra was well described by the Varshni's relation, E/sub g/(T) = 2.7284 eV - (8.695×10/sup -4/ eV/K)T²/(T + 332 K). After the as-grown AgGaS₂ single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of AgGaS₂ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of V/sub Ag/, V/sub s/, Ag/sub int/, and S/sub int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Ag-atmosphere converted AgGaS₂ single crystal thin films to an optical n-type. Also, we confirmed that Ga in AgGaS₂/GaAs crystal thin films did not form the native defects because Ga in AgGaS₂ single crystal thin films existed in the form of stable bonds.

Plasma Etching Process based on Real-time Monitoring of Radical Density and Substrate Temperature

  • Takeda, K.;Fukunaga, Y.;Tsutsumi, T.;Ishikawa, K.;Kondo, H.;Sekine, M.;Hori, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.93-93
    • /
    • 2016
  • Large scale integrated circuits (LSIs) has been improved by the shrinkage of the circuit dimensions. The smaller chip sizes and increase in circuit density require the miniaturization of the line-width and space between metal interconnections. Therefore, an extreme precise control of the critical dimension and pattern profile is necessary to fabricate next generation nano-electronics devices. The pattern profile control of plasma etching with an accuracy of sub-nanometer must be achieved. To realize the etching process which achieves the problem, understanding of the etching mechanism and precise control of the process based on the real-time monitoring of internal plasma parameters such as etching species density, surface temperature of substrate, etc. are very important. For instance, it is known that the etched profiles of organic low dielectric (low-k) films are sensitive to the substrate temperature and density ratio of H and N atoms in the H2/N2 plasma [1]. In this study, we introduced a feedback control of actual substrate temperature and radical density ratio monitored in real time. And then the dependence of etch rates and profiles of organic films have been evaluated based on the substrate temperatures. In this study, organic low-k films were etched by a dual frequency capacitively coupled plasma employing the mixture of H2/N2 gases. A 100-MHz power was supplied to an upper electrode for plasma generation. The Si substrate was electrostatically chucked to a lower electrode biased by supplying a 2-MHz power. To investigate the effects of H and N radical on the etching profile of organic low-k films, absolute H and N atom densities were measured by vacuum ultraviolet absorption spectroscopy [2]. Moreover, using the optical fiber-type low-coherence interferometer [3], substrate temperature has been measured in real time during etching process. From the measurement results, the temperature raised rapidly just after plasma ignition and was gradually saturated. The temporal change of substrate temperature is a crucial issue to control of surface reactions of reactive species. Therefore, by the intervals of on-off of the plasma discharge, the substrate temperature was maintained within ${\pm}1.5^{\circ}C$ from the set value. As a result, the temperatures were kept within $3^{\circ}C$ during the etching process. Then, we etched organic films with line-and-space pattern using this system. The cross-sections of the organic films etched for 50 s with the substrate temperatures at $20^{\circ}C$ and $100^{\circ}C$ were observed by SEM. From the results, they were different in the sidewall profile. It suggests that the reactions on the sidewalls changed according to the substrate temperature. The precise substrate temperature control method with real-time temperature monitoring and intermittent plasma generation was suggested to contribute on realization of fine pattern etching.

  • PDF

The comparative study of pure and pulsed DC plasma sputtering for synthesis of nanocrystalline Carbon thin films

  • Piao, Jin Xiang;Kumar, Manish;Javid, Amjed;Wen, Long;Jin, Su Bong;Han, Jeon Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.320-320
    • /
    • 2016
  • Nanocrystalline Carbon thin films have numerous applications in different areas such as mechanical, biotechnology and optoelectronic devices due to attractive properties like high excellent hardness, low friction coefficient, good chemical inertness, low surface roughness, non-toxic and biocompatibility. In this work, we studied the comparison of pure DC power and pulsed DC power in plasma sputtering process of carbon thin films synthesis. Using a close field unbalanced magnetron sputtering system, films were deposited on glass and Si wafer substrates by varying the power density and pulsed DC frequency variations. The plasma characteristics has been studied using the I-V discharge characteristics and optical emission spectroscopy. The films properties were studied using Raman spectroscopy, Hall effect measurement, contact angle measurement. Through the Raman results, ID/IG ratio was found to be increased by increasing either of DC power density and pulsed DC frequency. Film deposition rate, measured by Alpha step measurement, increased with increasing DC power density and decreased with pulsed DC frequency. The electrical resistivity results show that the resistivity increased with increasing DC power density and pulsed DC frequency. The film surface energy was estimated using the calculated values of contact angle of DI water and di-iodo-methane. Our results exhibit a tailoring of surface energies from 52.69 to $55.42mJ/m^2$ by controlling the plasma parameters.

  • PDF

Study on Developing Instrument System for Measuring Action time of K4 Grenade Machine Gun for Improving Quality Assurance on 40mm High Velocity Grenade (40mm 고속유탄의 품질보증 향상을 위한 K4 기관총의 Action Time 계측시스템 개발에 관한 연구)

  • Hong, Sung-Kook;Shin, Jun-Goo;Jeon, Hye-Jin;Kim, Yong-Hwa;Ju, Jin-Chun;Kwon, In-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4828-4834
    • /
    • 2015
  • From the moment that a firing pin triggers the detonator to the moment that a grenade leaves a barrel is called Action Time. Since a loading and percussion of 40mm grenade happens simultaneously, action time should be within a certain time in order to prevent a Jamming malfunction. Previously, unreliable action time device of 40mm grenade made it difficult to improve quality assurance of K4 Grenade Machine Gun. Here, various sensors were compared and a special device was designed to seek an accurate measurement on action time. In this device, the gap between a signal from an optical sensor in Firing Pin and that from Eddy current probe in the barrel was recorded and data were sent to a computer in real time. Confirming if action time is within the criteria, it is expected that action time plays an important role in quality assurance on 40mm grenade.

A study on the Need for Introducing the Information and Communication Facilities Maintenance Mandatory System: In view of Apartment House Environment) (정보통신설비의 유지관리 의무화제도 도입 필요성에 관한 연구(공동주택환경을 중심으로))

  • Lim, Sang-Chool;Kim, Sun-Hyung
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.6 no.3
    • /
    • pp.15-24
    • /
    • 2007
  • According to an apartment house environment and the service provide method of major telecom operators, is providing optic-LAN service with installing the equipments of optical office center and optic distribution at MDF(Main Distribution Frame) and under-ground of apartment. therefore the distribute is deepening between service providers because of space securement to install equipments and spare pipe securement to reinstall UTP cable. These were reasons that operators leaned to subscriber collection and neglected to maintenance, in addition, insist the facilities invested by each operators is his own assets for all that in-plant of apartment house is private land. So, would not being touched by others. Accordingly, this study will search it through the field current condition examine that service's types and methods which various telecom operators and broadcast operators are providing, the current conditions of being maintained, the problems of being happened. etc. and would like to improve that the users could use the services safely by making the information & communication facilities maintenance mandatory under the regular size of apartment house circumstances through the analysis of various laws relations which are managed information & communication construction work law, telecommunication basis law, home network. etc. technical standards by the Ministry of Information and Communication and are managed housing law, construction law, the regulation related to house construct standards. etc. by the Ministry of Construction and Transportation.

  • PDF

A Study on Iris Image Restoration Based on Focus Value of Iris Image (홍채 영상 초점 값에 기반한 홍채 영상 복원 연구)

  • Kang Byung-Jun;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.30-39
    • /
    • 2006
  • Iris recognition is that identifies a user based on the unique iris texture patterns which has the functionalities of dilating or contracting pupil region. Iris recognition systems extract the iris pattern in iris image captured by iris recognition camera. Therefore performance of iris recognition is affected by the quality of iris image which includes iris pattern. If iris image is blurred, iris pattern is transformed. It causes FRR(False Rejection Error) to be increased. Optical defocusing is the main factor to make blurred iris images. In conventional iris recognition camera, they use two kinds of focusing methods such as lilted and auto-focusing method. In case of fixed focusing method, the users should repeatedly align their eyes in DOF(Depth of Field), while the iris recognition system acquires good focused is image. Therefore it can give much inconvenience to the users. In case of auto-focusing method, the iris recognition camera moves focus lens with auto-focusing algorithm for capturing the best focused image. However, that needs additional H/W equipment such as distance measuring sensor between users and camera lens, and motor to move focus lens. Therefore the size and cost of iris recognition camera are increased and this kind of camera cannot be used for small sized mobile device. To overcome those problems, we propose method to increase DOF by iris image restoration algorithm based on focus value of iris image. When we tested our proposed algorithm with BM-ET100 made by Panasonic, we could increase operation range from 48-53cm to 46-56cm.